mmocr/configs/textrecog/seg/seg_r31_1by16_fpnocr_academ...

161 lines
4.6 KiB
Python

_base_ = ['../../_base_/default_runtime.py']
# optimizer
optimizer = dict(type='Adam', lr=1e-4)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=[3, 4])
total_epochs = 5
label_convertor = dict(
type='SegConvertor', dict_type='DICT36', with_unknown=True, lower=True)
model = dict(
type='SegRecognizer',
backbone=dict(
type='ResNet31OCR',
layers=[1, 2, 5, 3],
channels=[32, 64, 128, 256, 512, 512],
out_indices=[0, 1, 2, 3],
stage4_pool_cfg=dict(kernel_size=2, stride=2),
last_stage_pool=True),
neck=dict(
type='FPNOCR', in_channels=[128, 256, 512, 512], out_channels=256),
head=dict(
type='SegHead',
in_channels=256,
upsample_param=dict(scale_factor=2.0, mode='nearest')),
loss=dict(
type='SegLoss', seg_downsample_ratio=1.0, seg_with_loss_weight=True),
label_convertor=label_convertor)
find_unused_parameters = True
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
gt_label_convertor = dict(
type='SegConvertor', dict_type='DICT36', with_unknown=True, lower=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomPaddingOCR',
max_ratio=[0.15, 0.2, 0.15, 0.2],
box_type='char_quads'),
dict(type='OpencvToPil'),
dict(
type='RandomRotateImageBox',
min_angle=-17,
max_angle=17,
box_type='char_quads'),
dict(type='PilToOpencv'),
dict(
type='ResizeOCR',
height=64,
min_width=64,
max_width=512,
keep_aspect_ratio=True),
dict(
type='OCRSegTargets',
label_convertor=gt_label_convertor,
box_type='char_quads'),
dict(type='RandomRotateTextDet', rotate_ratio=0.5, max_angle=15),
dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4),
dict(type='ToTensorOCR'),
dict(type='FancyPCA'),
dict(type='NormalizeOCR', **img_norm_cfg),
dict(
type='CustomFormatBundle',
keys=['gt_kernels'],
visualize=dict(flag=False, boundary_key=None),
call_super=False),
dict(
type='Collect',
keys=['img', 'gt_kernels'],
meta_keys=['filename', 'ori_shape', 'img_shape'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeOCR',
height=64,
min_width=64,
max_width=None,
keep_aspect_ratio=True),
dict(type='ToTensorOCR'),
dict(type='NormalizeOCR', **img_norm_cfg),
dict(type='CustomFormatBundle', call_super=False),
dict(
type='Collect',
keys=['img'],
meta_keys=['filename', 'ori_shape', 'img_shape'])
]
train_img_root = 'data/mixture/'
train_img_prefix = train_img_root + 'SynthText'
train_ann_file = train_img_root + 'SynthText/instances_train.txt'
train = dict(
type='OCRSegDataset',
img_prefix=train_img_prefix,
ann_file=train_ann_file,
loader=dict(
type='HardDiskLoader',
repeat=1,
parser=dict(
type='LineJsonParser', keys=['file_name', 'annotations', 'text'])),
pipeline=train_pipeline,
test_mode=False)
dataset_type = 'OCRDataset'
test_prefix = 'data/mixture/'
test_img_prefix1 = test_prefix + 'IIIT5K/'
test_img_prefix2 = test_prefix + 'svt/'
test_img_prefix3 = test_prefix + 'icdar_2013/'
test_img_prefix4 = test_prefix + 'ct80/'
test_ann_file1 = test_prefix + 'IIIT5K/test_label.txt'
test_ann_file2 = test_prefix + 'svt/test_label.txt'
test_ann_file3 = test_prefix + 'icdar_2013/test_label_1015.txt'
test_ann_file4 = test_prefix + 'ct80/test_label.txt'
test1 = dict(
type=dataset_type,
img_prefix=test_img_prefix1,
ann_file=test_ann_file1,
loader=dict(
type='HardDiskLoader',
repeat=1,
parser=dict(
type='LineStrParser',
keys=['filename', 'text'],
keys_idx=[0, 1],
separator=' ')),
pipeline=test_pipeline,
test_mode=True)
test2 = {key: value for key, value in test1.items()}
test2['img_prefix'] = test_img_prefix2
test2['ann_file'] = test_ann_file2
test3 = {key: value for key, value in test1.items()}
test3['img_prefix'] = test_img_prefix3
test3['ann_file'] = test_ann_file3
test4 = {key: value for key, value in test1.items()}
test4['img_prefix'] = test_img_prefix4
test4['ann_file'] = test_ann_file4
data = dict(
samples_per_gpu=16,
workers_per_gpu=2,
train=dict(type='ConcatDataset', datasets=[train]),
val=dict(type='ConcatDataset', datasets=[test1, test2, test3, test4]),
test=dict(type='ConcatDataset', datasets=[test1, test2, test3, test4]))
evaluation = dict(interval=1, metric='acc')