mirror of https://github.com/open-mmlab/mmocr.git
232 lines
7.1 KiB
Python
232 lines
7.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import glob
|
|
import os.path as osp
|
|
import xml.etree.ElementTree as ET
|
|
from functools import partial
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
from shapely.geometry import Polygon
|
|
|
|
from mmocr.utils import convert_annotations, list_from_file
|
|
|
|
|
|
def collect_files(img_dir, gt_dir, split):
|
|
"""Collect all images and their corresponding groundtruth files.
|
|
|
|
Args:
|
|
img_dir(str): The image directory
|
|
gt_dir(str): The groundtruth directory
|
|
split(str): The split of dataset. Namely: training or test
|
|
|
|
Returns:
|
|
files(list): The list of tuples (img_file, groundtruth_file)
|
|
"""
|
|
assert isinstance(img_dir, str)
|
|
assert img_dir
|
|
assert isinstance(gt_dir, str)
|
|
assert gt_dir
|
|
|
|
# note that we handle png and jpg only. Pls convert others such as gif to
|
|
# jpg or png offline
|
|
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG']
|
|
|
|
imgs_list = []
|
|
for suffix in suffixes:
|
|
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix)))
|
|
|
|
files = []
|
|
if split == 'training':
|
|
for img_file in imgs_list:
|
|
gt_file = gt_dir + '/' + osp.splitext(
|
|
osp.basename(img_file))[0] + '.xml'
|
|
files.append((img_file, gt_file))
|
|
assert len(files), f'No images found in {img_dir}'
|
|
print(f'Loaded {len(files)} images from {img_dir}')
|
|
elif split == 'test':
|
|
for img_file in imgs_list:
|
|
gt_file = gt_dir + '/000' + osp.splitext(
|
|
osp.basename(img_file))[0] + '.txt'
|
|
files.append((img_file, gt_file))
|
|
assert len(files), f'No images found in {img_dir}'
|
|
print(f'Loaded {len(files)} images from {img_dir}')
|
|
|
|
return files
|
|
|
|
|
|
def collect_annotations(files, split, nproc=1):
|
|
"""Collect the annotation information.
|
|
|
|
Args:
|
|
files(list): The list of tuples (image_file, groundtruth_file)
|
|
split(str): The split of dataset. Namely: training or test
|
|
nproc(int): The number of process to collect annotations
|
|
|
|
Returns:
|
|
images(list): The list of image information dicts
|
|
"""
|
|
assert isinstance(files, list)
|
|
assert isinstance(split, str)
|
|
assert isinstance(nproc, int)
|
|
|
|
load_img_info_with_split = partial(load_img_info, split=split)
|
|
if nproc > 1:
|
|
images = mmcv.track_parallel_progress(
|
|
load_img_info_with_split, files, nproc=nproc)
|
|
else:
|
|
images = mmcv.track_progress(load_img_info_with_split, files)
|
|
|
|
return images
|
|
|
|
|
|
def load_txt_info(gt_file, img_info):
|
|
anno_info = []
|
|
for line in list_from_file(gt_file):
|
|
# each line has one ploygen (n vetices), and one text.
|
|
# e.g., 695,885,866,888,867,1146,696,1143,####Latin 9
|
|
line = line.strip()
|
|
strs = line.split(',')
|
|
category_id = 1
|
|
assert strs[28][0] == '#'
|
|
xy = [int(x) for x in strs[0:28]]
|
|
assert len(xy) == 28
|
|
coordinates = np.array(xy).reshape(-1, 2)
|
|
polygon = Polygon(coordinates)
|
|
iscrowd = 0
|
|
area = polygon.area
|
|
# convert to COCO style XYWH format
|
|
min_x, min_y, max_x, max_y = polygon.bounds
|
|
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
|
|
text = strs[28][4:]
|
|
|
|
anno = dict(
|
|
iscrowd=iscrowd,
|
|
category_id=category_id,
|
|
bbox=bbox,
|
|
area=area,
|
|
text=text,
|
|
segmentation=[xy])
|
|
anno_info.append(anno)
|
|
img_info.update(anno_info=anno_info)
|
|
return img_info
|
|
|
|
|
|
def load_xml_info(gt_file, img_info):
|
|
|
|
obj = ET.parse(gt_file)
|
|
anno_info = []
|
|
for image in obj.getroot(): # image
|
|
for box in image: # image
|
|
h = box.attrib['height']
|
|
w = box.attrib['width']
|
|
x = box.attrib['left']
|
|
y = box.attrib['top']
|
|
text = box[0].text
|
|
segs = box[1].text
|
|
pts = segs.strip().split(',')
|
|
pts = [int(x) for x in pts]
|
|
assert len(pts) == 28
|
|
# pts = []
|
|
# for iter in range(2,len(box)):
|
|
# pts.extend([int(box[iter].attrib['x']),
|
|
# int(box[iter].attrib['y'])])
|
|
iscrowd = 0
|
|
category_id = 1
|
|
bbox = [int(x), int(y), int(w), int(h)]
|
|
|
|
coordinates = np.array(pts).reshape(-1, 2)
|
|
polygon = Polygon(coordinates)
|
|
area = polygon.area
|
|
anno = dict(
|
|
iscrowd=iscrowd,
|
|
category_id=category_id,
|
|
bbox=bbox,
|
|
area=area,
|
|
text=text,
|
|
segmentation=[pts])
|
|
anno_info.append(anno)
|
|
|
|
img_info.update(anno_info=anno_info)
|
|
|
|
return img_info
|
|
|
|
|
|
def load_img_info(files, split):
|
|
"""Load the information of one image.
|
|
|
|
Args:
|
|
files(tuple): The tuple of (img_file, groundtruth_file)
|
|
split(str): The split of dataset: training or test
|
|
|
|
Returns:
|
|
img_info(dict): The dict of the img and annotation information
|
|
"""
|
|
assert isinstance(files, tuple)
|
|
assert isinstance(split, str)
|
|
|
|
img_file, gt_file = files
|
|
# read imgs with ignoring orientations
|
|
img = mmcv.imread(img_file, 'unchanged')
|
|
|
|
split_name = osp.basename(osp.dirname(img_file))
|
|
img_info = dict(
|
|
# remove img_prefix for filename
|
|
file_name=osp.join(split_name, osp.basename(img_file)),
|
|
height=img.shape[0],
|
|
width=img.shape[1],
|
|
# anno_info=anno_info,
|
|
segm_file=osp.join(split_name, osp.basename(gt_file)))
|
|
|
|
if split == 'training':
|
|
img_info = load_xml_info(gt_file, img_info)
|
|
elif split == 'test':
|
|
img_info = load_txt_info(gt_file, img_info)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
return img_info
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='Convert ctw1500 annotations to COCO format')
|
|
parser.add_argument('root_path', help='ctw1500 root path')
|
|
parser.add_argument('-o', '--out-dir', help='output path')
|
|
parser.add_argument(
|
|
'--split-list',
|
|
nargs='+',
|
|
help='a list of splits. e.g., "--split-list training test"')
|
|
|
|
parser.add_argument(
|
|
'--nproc', default=1, type=int, help='number of process')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
root_path = args.root_path
|
|
out_dir = args.out_dir if args.out_dir else root_path
|
|
mmcv.mkdir_or_exist(out_dir)
|
|
|
|
img_dir = osp.join(root_path, 'imgs')
|
|
gt_dir = osp.join(root_path, 'annotations')
|
|
|
|
set_name = {}
|
|
for split in args.split_list:
|
|
set_name.update({split: 'instances_' + split + '.json'})
|
|
assert osp.exists(osp.join(img_dir, split))
|
|
|
|
for split, json_name in set_name.items():
|
|
print(f'Converting {split} into {json_name}')
|
|
with mmcv.Timer(print_tmpl='It takes {}s to convert icdar annotation'):
|
|
files = collect_files(
|
|
osp.join(img_dir, split), osp.join(gt_dir, split), split)
|
|
image_infos = collect_annotations(files, split, nproc=args.nproc)
|
|
convert_annotations(image_infos, osp.join(out_dir, json_name))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|