mirror of https://github.com/open-mmlab/mmocr.git
87 lines
2.5 KiB
Python
87 lines
2.5 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import json
|
|
import os.path as osp
|
|
|
|
from mmocr.utils.fileio import list_to_file
|
|
|
|
|
|
def convert_annotations(root_path, split, format):
|
|
"""Convert original annotations to mmocr format
|
|
The annotation format is as the following:
|
|
word_1.png, "flying"
|
|
word_2.png, "today"
|
|
word_3.png, "means"
|
|
After this module, the annotation has been changed to the format below:
|
|
txt:
|
|
word_1.png flying
|
|
word_2.png today
|
|
word_3.png means
|
|
|
|
jsonl:
|
|
{'filename': 'word_1.png', 'text': 'flying'}
|
|
{'filename': 'word_2.png', 'text': 'today'}
|
|
{'filename': 'word_3.png', 'text': 'means'}
|
|
|
|
Args:
|
|
root_path (str): The root path of the dataset
|
|
split (str): The split of dataset. Namely: training or test
|
|
format (str): Annotation format, should be either 'txt' or 'jsonl'
|
|
|
|
"""
|
|
assert isinstance(root_path, str)
|
|
assert isinstance(split, str)
|
|
|
|
lines = []
|
|
with open(
|
|
osp.join(root_path, 'annotations',
|
|
f'Challenge2_{split}_Task3_GT.txt'),
|
|
encoding='"utf-8-sig') as f:
|
|
annos = f.readlines()
|
|
dst_image_root = osp.join(root_path, split.lower())
|
|
for anno in annos:
|
|
# text may contain comma ','
|
|
dst_img_name, word = anno.split(', "')
|
|
word = word.replace('"\n', '')
|
|
|
|
if format == 'txt':
|
|
lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} '
|
|
f'{word}')
|
|
elif format == 'jsonl':
|
|
lines.append(
|
|
json.dumps({
|
|
'filename':
|
|
f'{osp.basename(dst_image_root)}/{dst_img_name}',
|
|
'text': word
|
|
}))
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
list_to_file(osp.join(root_path, f'{split.lower()}_label.{format}'), lines)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='Generate training and test set of IC13')
|
|
parser.add_argument('root_path', help='Root dir path of IC13')
|
|
parser.add_argument(
|
|
'--format',
|
|
default='jsonl',
|
|
help='Use jsonl or string to format annotations',
|
|
choices=['jsonl', 'txt'])
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
root_path = args.root_path
|
|
|
|
for split in ['Train', 'Test']:
|
|
convert_annotations(root_path, split, args.format)
|
|
print(f'{split} split converted.')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|