mmocr/configs/textrecog/satrn/satrn_academic.py

80 lines
2.5 KiB
Python

_base_ = [
'satrn.py',
'../../_base_/recog_datasets/ST_MJ_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_5e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
# optimizer
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
model = dict(
type='SATRN',
backbone=dict(type='ShallowCNN', input_channels=3, hidden_dim=512),
encoder=dict(
type='SATRNEncoder',
n_layers=12,
n_head=8,
d_k=512 // 8,
d_v=512 // 8,
d_model=512,
n_position=100,
d_inner=512 * 4,
dropout=0.1),
decoder=dict(
type='NRTRDecoder',
n_layers=6,
d_embedding=512,
n_head=8,
d_model=512,
d_inner=512 * 4,
d_k=512 // 8,
d_v=512 // 8,
module_loss=dict(
type='CEModuleLoss', flatten=True, ignore_first_char=True),
max_seq_len=25,
postprocessor=dict(type='AttentionPostprocessor')))
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadOCRAnnotations', with_text=True),
dict(type='Resize', scale=(100, 32), keep_ratio=False),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
# TODO Add Test Time Augmentation `MultiRotateAugOCR`
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='Resize', scale=(100, 32), keep_ratio=False),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio',
'instances'))
]
train_dataloader = dict(
batch_size=64,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
test_cfg = dict(type='MultiTestLoop')
val_cfg = dict(type='MultiValLoop')
val_dataloader = _base_.val_dataloader
test_dataloader = _base_.test_dataloader
for dataloader in test_dataloader:
dataloader['dataset']['pipeline'] = test_pipeline
for dataloader in val_dataloader:
dataloader['dataset']['pipeline'] = test_pipeline
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')