mirror of https://github.com/open-mmlab/mmocr.git
118 lines
4.9 KiB
Python
118 lines
4.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
"""Test hmean_ic13."""
|
|
import math
|
|
|
|
import pytest
|
|
|
|
import mmocr.core.evaluation.hmean_ic13 as hmean_ic13
|
|
import mmocr.core.evaluation.utils as utils
|
|
|
|
|
|
def test_compute_recall_precision():
|
|
|
|
gt_polys = []
|
|
det_polys = []
|
|
|
|
# test invalid arguments.
|
|
with pytest.raises(AssertionError):
|
|
hmean_ic13.compute_recall_precision(1, 1)
|
|
|
|
box1 = [0, 0, 1, 0, 1, 1, 0, 1]
|
|
|
|
box2 = [0, 0, 10, 0, 10, 1, 0, 1]
|
|
|
|
gt_polys = [utils.points2polygon(box1)]
|
|
det_polys = [utils.points2polygon(box2)]
|
|
recall, precision = hmean_ic13.compute_recall_precision(
|
|
gt_polys, det_polys)
|
|
assert recall == 1
|
|
assert precision == 0.1
|
|
|
|
|
|
def test_eval_hmean_ic13():
|
|
det_boxes = []
|
|
gt_boxes = []
|
|
gt_ignored_boxes = []
|
|
precision_thr = 0.4
|
|
recall_thr = 0.8
|
|
center_dist_thr = 1.0
|
|
one2one_score = 1.
|
|
one2many_score = 0.8
|
|
many2one_score = 1
|
|
# test invalid arguments.
|
|
|
|
with pytest.raises(AssertionError):
|
|
hmean_ic13.eval_hmean_ic13([1], gt_boxes, gt_ignored_boxes,
|
|
precision_thr, recall_thr, center_dist_thr,
|
|
one2one_score, one2many_score,
|
|
many2one_score)
|
|
|
|
with pytest.raises(AssertionError):
|
|
hmean_ic13.eval_hmean_ic13(det_boxes, 1, gt_ignored_boxes,
|
|
precision_thr, recall_thr, center_dist_thr,
|
|
one2one_score, one2many_score,
|
|
many2one_score)
|
|
with pytest.raises(AssertionError):
|
|
hmean_ic13.eval_hmean_ic13(det_boxes, gt_boxes, 1, precision_thr,
|
|
recall_thr, center_dist_thr, one2one_score,
|
|
one2many_score, many2one_score)
|
|
with pytest.raises(AssertionError):
|
|
hmean_ic13.eval_hmean_ic13(det_boxes, gt_boxes, gt_ignored_boxes, 1.1,
|
|
recall_thr, center_dist_thr, one2one_score,
|
|
one2many_score, many2one_score)
|
|
with pytest.raises(AssertionError):
|
|
hmean_ic13.eval_hmean_ic13(det_boxes, gt_boxes, gt_ignored_boxes,
|
|
precision_thr, 1.1, center_dist_thr,
|
|
one2one_score, one2many_score,
|
|
many2one_score)
|
|
with pytest.raises(AssertionError):
|
|
hmean_ic13.eval_hmean_ic13(det_boxes, gt_boxes, gt_ignored_boxes,
|
|
precision_thr, recall_thr, -1,
|
|
one2one_score, one2many_score,
|
|
many2one_score)
|
|
with pytest.raises(AssertionError):
|
|
hmean_ic13.eval_hmean_ic13(det_boxes, gt_boxes, gt_ignored_boxes,
|
|
precision_thr, recall_thr, center_dist_thr,
|
|
-1, one2many_score, many2one_score)
|
|
with pytest.raises(AssertionError):
|
|
hmean_ic13.eval_hmean_ic13(det_boxes, gt_boxes, gt_ignored_boxes,
|
|
precision_thr, recall_thr, center_dist_thr,
|
|
one2one_score, -1, many2one_score)
|
|
with pytest.raises(AssertionError):
|
|
hmean_ic13.eval_hmean_ic13(det_boxes, gt_boxes, gt_ignored_boxes,
|
|
precision_thr, recall_thr, center_dist_thr,
|
|
one2one_score, one2many_score, -1)
|
|
|
|
# test one2one match
|
|
det_boxes = [[[0, 0, 1, 0, 1, 1, 0, 1], [10, 0, 11, 0, 11, 1, 10, 1]]]
|
|
gt_boxes = [[[0, 0, 1, 0, 1, 1, 0, 1]]]
|
|
gt_ignored_boxes = [[]]
|
|
dataset_result, img_result = hmean_ic13.eval_hmean_ic13(
|
|
det_boxes, gt_boxes, gt_ignored_boxes, precision_thr, recall_thr,
|
|
center_dist_thr, one2one_score, one2many_score, many2one_score)
|
|
assert img_result[0]['recall'] == 1
|
|
assert img_result[0]['precision'] == 0.5
|
|
assert math.isclose(img_result[0]['hmean'], 2 * (0.5) / 1.5)
|
|
|
|
# test one2many match
|
|
gt_boxes = [[[0, 0, 2, 0, 2, 1, 0, 1]]]
|
|
det_boxes = [[[0, 0, 1, 0, 1, 1, 0, 1], [1, 0, 2, 0, 2, 1, 1, 1]]]
|
|
dataset_result, img_result = hmean_ic13.eval_hmean_ic13(
|
|
det_boxes, gt_boxes, gt_ignored_boxes, precision_thr, recall_thr,
|
|
center_dist_thr, one2one_score, one2many_score, many2one_score)
|
|
assert img_result[0]['recall'] == 0.8
|
|
assert img_result[0]['precision'] == 1.6 / 2
|
|
assert math.isclose(img_result[0]['hmean'], 2 * (0.64) / 1.6)
|
|
|
|
# test many2one match
|
|
precision_thr = 0.6
|
|
recall_thr = 0.8
|
|
det_boxes = [[[0, 0, 2, 0, 2, 1, 0, 1]]]
|
|
gt_boxes = [[[0, 0, 1, 0, 1, 1, 0, 1], [1, 0, 2, 0, 2, 1, 1, 1]]]
|
|
dataset_result, img_result = hmean_ic13.eval_hmean_ic13(
|
|
det_boxes, gt_boxes, gt_ignored_boxes, precision_thr, recall_thr,
|
|
center_dist_thr, one2one_score, one2many_score, many2one_score)
|
|
assert img_result[0]['recall'] == 1
|
|
assert img_result[0]['precision'] == 1
|
|
assert math.isclose(img_result[0]['hmean'], 1)
|