mmocr/tools/data/textdet/totaltext_converter.py

312 lines
9.1 KiB
Python

import argparse
import glob
import os.path as osp
from functools import partial
import cv2
import mmcv
import numpy as np
import scipy.io as scio
from shapely.geometry import Polygon
from mmocr.utils import convert_annotations, drop_orientation, is_not_png
def collect_files(img_dir, gt_dir, split):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir(str): The image directory
gt_dir(str): The groundtruth directory
split(str): The split of dataset. Namely: training or test
Returns:
files(list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
# note that we handle png and jpg only. Pls convert others such as gif to
# jpg or png offline
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG']
# suffixes = ['.png']
imgs_list = []
for suffix in suffixes:
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix)))
imgs_list = [
drop_orientation(f) if is_not_png(f) else f for f in imgs_list
]
files = []
if split == 'training':
for img_file in imgs_list:
gt_file = osp.join(
gt_dir,
'poly_gt_' + osp.splitext(osp.basename(img_file))[0] + '.mat')
files.append((img_file, gt_file))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
elif split == 'test':
for img_file in imgs_list:
gt_file = osp.join(
gt_dir,
'poly_gt_' + osp.splitext(osp.basename(img_file))[0] + '.mat')
files.append((img_file, gt_file))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, split, nproc=1):
"""Collect the annotation information.
Args:
files(list): The list of tuples (image_file, groundtruth_file)
split(str): The split of dataset. Namely: training or test
nproc(int): The number of process to collect annotations
Returns:
images(list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(split, str)
assert isinstance(nproc, int)
load_img_info_with_split = partial(load_img_info, split=split)
if nproc > 1:
images = mmcv.track_parallel_progress(
load_img_info_with_split, files, nproc=nproc)
else:
images = mmcv.track_progress(load_img_info_with_split, files)
return images
def get_contours(gt_path, split):
"""Get the contours and words for each ground_truth file.
Args:
gt_path(str): The relative path of the ground_truth mat file
split(str): The split of dataset: training or test
Returns:
contours(list[lists]): A list of lists of contours
for the text instances
words(list[list]): A list of lists of words (string)
for the text instances
"""
assert isinstance(gt_path, str)
assert isinstance(split, str)
contours = []
words = []
data = scio.loadmat(gt_path)
if split == 'training':
data_polygt = data['polygt']
elif split == 'test':
data_polygt = data['polygt']
for i, lines in enumerate(data_polygt):
X = np.array(lines[1])
Y = np.array(lines[3])
point_num = len(X[0])
word = lines[4]
if len(word) == 0:
word = '???'
else:
word = word[0]
if word == '#':
word = '###'
continue
words.append(word)
arr = np.concatenate([X, Y]).T
contour = []
for i in range(point_num):
contour.append(arr[i][0])
contour.append(arr[i][1])
contours.append(np.asarray(contour))
return contours, words
def load_mat_info(img_info, gt_file, split):
"""Load the information of one ground truth in .mat format.
Args:
img_info(dict): The dict of only the image information
gt_file(str): The relative path of the ground_truth mat
file for one image
split(str): The split of dataset: training or test
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(img_info, dict)
assert isinstance(gt_file, str)
assert isinstance(split, str)
contours, words = get_contours(gt_file, split)
anno_info = []
for contour in contours:
if contour.shape[0] == 2:
continue
category_id = 1
coordinates = np.array(contour).reshape(-1, 2)
polygon = Polygon(coordinates)
iscrowd = 0
area = polygon.area
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
segmentation=[contour])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_png_info(gt_file, img_info):
"""Load the information of one ground truth in .png format.
Args:
gt_file(str): The relative path of the ground_truth file for one image
img_info(dict): The dict of only the image information
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(gt_file, str)
assert isinstance(img_info, dict)
gt_img = cv2.imread(gt_file, 0)
contours, _ = cv2.findContours(gt_img, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
anno_info = []
for contour in contours:
if contour.shape[0] == 2:
continue
category_id = 1
xy = np.array(contour).flatten().tolist()
coordinates = np.array(contour).reshape(-1, 2)
polygon = Polygon(coordinates)
iscrowd = 0
area = polygon.area
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
segmentation=[xy])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_img_info(files, split):
"""Load the information of one image.
Args:
files(tuple): The tuple of (img_file, groundtruth_file)
split(str): The split of dataset: training or test
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
assert isinstance(split, str)
img_file, gt_file = files
# read imgs with ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
# read imgs with orientations as dataloader does when training and testing
img_color = mmcv.imread(img_file, 'color')
# make sure imgs have no orientation info, or annotation gt is wrong.
assert img.shape[0:2] == img_color.shape[0:2]
split_name = osp.basename(osp.dirname(img_file))
img_info = dict(
# remove img_prefix for filename
file_name=osp.join(split_name, osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
# anno_info=anno_info,
segm_file=osp.join(split_name, osp.basename(gt_file)))
if split == 'training':
img_info = load_mat_info(img_info, gt_file, split)
elif split == 'test':
img_info = load_mat_info(img_info, gt_file, split)
else:
raise NotImplementedError
return img_info
def parse_args():
parser = argparse.ArgumentParser(
description='Convert totaltext annotations to COCO format')
parser.add_argument('root_path', help='totaltext root path')
parser.add_argument('-o', '--out-dir', help='output path')
parser.add_argument(
'--split-list',
nargs='+',
help='a list of splits. e.g., "--split_list training test"')
parser.add_argument(
'--nproc', default=1, type=int, help='number of process')
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
out_dir = args.out_dir if args.out_dir else root_path
mmcv.mkdir_or_exist(out_dir)
img_dir = osp.join(root_path, 'imgs')
gt_dir = osp.join(root_path, 'annotations')
set_name = {}
for split in args.split_list:
set_name.update({split: 'instances_' + split + '.json'})
assert osp.exists(osp.join(img_dir, split))
for split, json_name in set_name.items():
print(f'Converting {split} into {json_name}')
with mmcv.Timer(
print_tmpl='It takes {}s to convert totaltext annotation'):
files = collect_files(
osp.join(img_dir, split), osp.join(gt_dir, split), split)
image_infos = collect_annotations(files, split, nproc=args.nproc)
convert_annotations(image_infos, osp.join(out_dir, json_name))
if __name__ == '__main__':
main()