mirror of https://github.com/open-mmlab/mmocr.git
54 lines
1.4 KiB
Python
54 lines
1.4 KiB
Python
_base_ = [
|
|
'../../_base_/default_runtime.py',
|
|
'../../_base_/schedules/schedule_adam_step_6e.py',
|
|
'../../_base_/recog_pipelines/nrtr_pipeline.py',
|
|
'../../_base_/recog_datasets/ST_MJ_train.py',
|
|
'../../_base_/recog_datasets/academic_test.py'
|
|
]
|
|
|
|
train_list = {{_base_.train_list}}
|
|
test_list = {{_base_.test_list}}
|
|
|
|
train_pipeline = {{_base_.train_pipeline}}
|
|
test_pipeline = {{_base_.test_pipeline}}
|
|
|
|
max_seq_len = 40
|
|
|
|
label_convertor = dict(
|
|
type='AttnConvertor',
|
|
dict_type='DICT90',
|
|
with_unknown=True,
|
|
max_seq_len=max_seq_len)
|
|
|
|
model = dict(
|
|
type='NRTR',
|
|
backbone=dict(
|
|
type='ResNet31OCR',
|
|
layers=[1, 2, 5, 3],
|
|
channels=[32, 64, 128, 256, 512, 512],
|
|
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)),
|
|
last_stage_pool=False),
|
|
encoder=dict(type='NRTREncoder'),
|
|
decoder=dict(type='NRTRDecoder'),
|
|
loss=dict(type='TFLoss'),
|
|
label_convertor=label_convertor,
|
|
max_seq_len=max_seq_len)
|
|
|
|
data = dict(
|
|
samples_per_gpu=64,
|
|
workers_per_gpu=4,
|
|
train=dict(
|
|
type='UniformConcatDataset',
|
|
datasets=train_list,
|
|
pipeline=train_pipeline),
|
|
val=dict(
|
|
type='UniformConcatDataset',
|
|
datasets=test_list,
|
|
pipeline=test_pipeline),
|
|
test=dict(
|
|
type='UniformConcatDataset',
|
|
datasets=test_list,
|
|
pipeline=test_pipeline))
|
|
|
|
evaluation = dict(interval=1, metric='acc')
|