mirror of https://github.com/open-mmlab/mmocr.git
249 lines
9.3 KiB
Python
249 lines
9.3 KiB
Python
#!/usr/bin/env python
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os
|
|
import warnings
|
|
|
|
import mmcv
|
|
import torch
|
|
from mmcv import Config, DictAction
|
|
from mmcv.cnn import fuse_conv_bn
|
|
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
|
|
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
|
|
wrap_fp16_model)
|
|
from mmdet.apis import multi_gpu_test
|
|
|
|
from mmocr.apis.test import single_gpu_test
|
|
from mmocr.apis.utils import (disable_text_recog_aug_test,
|
|
replace_image_to_tensor)
|
|
from mmocr.datasets import build_dataloader, build_dataset
|
|
from mmocr.models import build_detector
|
|
from mmocr.utils import revert_sync_batchnorm, setup_multi_processes
|
|
|
|
|
|
class TestArg:
|
|
|
|
def __init__(self, config=None, checkpoint=None):
|
|
self.arg_list = None
|
|
if config is not None and checkpoint is not None:
|
|
self.arg_list = [config, checkpoint]
|
|
|
|
def add_arg(self, key, value=None):
|
|
self.arg_list.append(key)
|
|
if value is not None:
|
|
self.arg_list.append(value)
|
|
|
|
|
|
def parse_args(arg_list=None):
|
|
parser = argparse.ArgumentParser(
|
|
description='MMOCR test (and eval) a model.')
|
|
parser.add_argument('config', help='Test config file path.')
|
|
parser.add_argument('checkpoint', help='Checkpoint file.')
|
|
parser.add_argument('--out', help='Output result file in pickle format.')
|
|
parser.add_argument(
|
|
'--fuse-conv-bn',
|
|
action='store_true',
|
|
help='Whether to fuse conv and bn, this will slightly increase'
|
|
'the inference speed.')
|
|
parser.add_argument(
|
|
'--gpu-id',
|
|
type=int,
|
|
default=0,
|
|
help='id of gpu to use '
|
|
'(only applicable to non-distributed testing)')
|
|
parser.add_argument(
|
|
'--format-only',
|
|
action='store_true',
|
|
help='Format the output results without performing evaluation. It is'
|
|
'useful when you want to format the results to a specific format and '
|
|
'submit them to the test server.')
|
|
parser.add_argument(
|
|
'--eval',
|
|
type=str,
|
|
nargs='+',
|
|
help='The evaluation metrics. Options: \'hmean-ic13\', \'hmean-iou'
|
|
'\' for text detection tasks, \'acc\' for text recognition tasks, and '
|
|
'\'macro-f1\' for key information extraction tasks.')
|
|
parser.add_argument('--show', action='store_true', help='Show results.')
|
|
parser.add_argument(
|
|
'--show-dir', help='Directory where the output images will be saved.')
|
|
parser.add_argument(
|
|
'--show-score-thr',
|
|
type=float,
|
|
default=0.3,
|
|
help='Score threshold (default: 0.3).')
|
|
parser.add_argument(
|
|
'--gpu-collect',
|
|
action='store_true',
|
|
help='Whether to use gpu to collect results.')
|
|
parser.add_argument(
|
|
'--tmpdir',
|
|
help='The tmp directory used for collecting results from multiple '
|
|
'workers, available when gpu-collect is not specified.')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='Override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into the config file. If the value '
|
|
'to be overwritten is a list, it should be of the form of either '
|
|
'key="[a,b]" or key=a,b. The argument also allows nested list/tuple '
|
|
'values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks '
|
|
'are necessary and that no white space is allowed.')
|
|
parser.add_argument(
|
|
'--options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='Custom options for evaluation, the key-value pair in xxx=yyy '
|
|
'format will be kwargs for dataset.evaluate() function (deprecate), '
|
|
'change to --eval-options instead.')
|
|
parser.add_argument(
|
|
'--eval-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='Custom options for evaluation, the key-value pair in xxx=yyy '
|
|
'format will be kwargs for dataset.evaluate() function.')
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='Options for job launcher.')
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
args = parser.parse_args(arg_list)
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
|
|
if args.options and args.eval_options:
|
|
raise ValueError(
|
|
'--options and --eval-options cannot be both '
|
|
'specified, --options is deprecated in favor of --eval-options.')
|
|
if args.options:
|
|
warnings.warn('--options is deprecated in favor of --eval-options.')
|
|
args.eval_options = args.options
|
|
return args
|
|
|
|
|
|
def run_test_cmd(args):
|
|
|
|
assert (
|
|
args.out or args.eval or args.format_only or args.show
|
|
or args.show_dir), (
|
|
'Please specify at least one operation (save/eval/format/show the '
|
|
'results / save the results) with the argument "--out", "--eval"'
|
|
', "--format-only", "--show" or "--show-dir".')
|
|
|
|
if args.eval and args.format_only:
|
|
raise ValueError('--eval and --format_only cannot be both specified.')
|
|
|
|
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
|
|
raise ValueError('The output file must be a pkl file.')
|
|
|
|
cfg = Config.fromfile(args.config)
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
setup_multi_processes(cfg)
|
|
|
|
# set cudnn_benchmark
|
|
if cfg.get('cudnn_benchmark', False):
|
|
torch.backends.cudnn.benchmark = True
|
|
if cfg.model.get('pretrained'):
|
|
cfg.model.pretrained = None
|
|
if cfg.model.get('neck'):
|
|
if isinstance(cfg.model.neck, list):
|
|
for neck_cfg in cfg.model.neck:
|
|
if neck_cfg.get('rfp_backbone'):
|
|
if neck_cfg.rfp_backbone.get('pretrained'):
|
|
neck_cfg.rfp_backbone.pretrained = None
|
|
elif cfg.model.neck.get('rfp_backbone'):
|
|
if cfg.model.neck.rfp_backbone.get('pretrained'):
|
|
cfg.model.neck.rfp_backbone.pretrained = None
|
|
|
|
# in case the test dataset is concatenated
|
|
samples_per_gpu = (cfg.data.get('test_dataloader', {})).get(
|
|
'samples_per_gpu', cfg.data.get('samples_per_gpu', 1))
|
|
if samples_per_gpu > 1:
|
|
cfg = disable_text_recog_aug_test(cfg)
|
|
cfg = replace_image_to_tensor(cfg)
|
|
|
|
# init distributed env first, since logger depends on the dist info.
|
|
if args.launcher == 'none':
|
|
cfg.gpu_ids = [args.gpu_id]
|
|
distributed = False
|
|
else:
|
|
distributed = True
|
|
init_dist(args.launcher, **cfg.dist_params)
|
|
|
|
# build the dataloader
|
|
dataset = build_dataset(cfg.data.test, dict(test_mode=True))
|
|
# step 1: give default values and override (if exist) from cfg.data
|
|
default_loader_cfg = {
|
|
**dict(seed=cfg.get('seed'), drop_last=False, dist=distributed),
|
|
**({} if torch.__version__ != 'parrots' else dict(
|
|
prefetch_num=2,
|
|
pin_memory=False,
|
|
))
|
|
}
|
|
default_loader_cfg.update({
|
|
k: v
|
|
for k, v in cfg.data.items() if k not in [
|
|
'train', 'val', 'test', 'train_dataloader', 'val_dataloader',
|
|
'test_dataloader'
|
|
]
|
|
})
|
|
test_loader_cfg = {
|
|
**default_loader_cfg,
|
|
**dict(shuffle=False, drop_last=False),
|
|
**cfg.data.get('test_dataloader', {}),
|
|
**dict(samples_per_gpu=samples_per_gpu)
|
|
}
|
|
|
|
data_loader = build_dataloader(dataset, **test_loader_cfg)
|
|
|
|
# build the model and load checkpoint
|
|
cfg.model.train_cfg = None
|
|
model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
|
|
model = revert_sync_batchnorm(model)
|
|
fp16_cfg = cfg.get('fp16', None)
|
|
if fp16_cfg is not None:
|
|
wrap_fp16_model(model)
|
|
load_checkpoint(model, args.checkpoint, map_location='cpu')
|
|
if args.fuse_conv_bn:
|
|
model = fuse_conv_bn(model)
|
|
|
|
if not distributed:
|
|
model = MMDataParallel(model, device_ids=cfg.gpu_ids)
|
|
is_kie = cfg.model.type in ['SDMGR']
|
|
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
|
|
is_kie, args.show_score_thr)
|
|
else:
|
|
model = MMDistributedDataParallel(
|
|
model.cuda(),
|
|
device_ids=[torch.cuda.current_device()],
|
|
broadcast_buffers=False)
|
|
outputs = multi_gpu_test(model, data_loader, args.tmpdir,
|
|
args.gpu_collect)
|
|
|
|
rank, _ = get_dist_info()
|
|
if rank == 0:
|
|
if args.out:
|
|
print(f'\nwriting results to {args.out}')
|
|
mmcv.dump(outputs, args.out)
|
|
kwargs = {} if args.eval_options is None else args.eval_options
|
|
if args.format_only:
|
|
dataset.format_results(outputs, **kwargs)
|
|
if args.eval:
|
|
eval_kwargs = cfg.get('evaluation', {}).copy()
|
|
# hard-code way to remove EvalHook args
|
|
for key in [
|
|
'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
|
|
'rule'
|
|
]:
|
|
eval_kwargs.pop(key, None)
|
|
eval_kwargs.update(dict(metric=args.eval, **kwargs))
|
|
print(dataset.evaluate(outputs, **eval_kwargs))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_args(TestArg().arg_list)
|
|
run_test_cmd(args)
|