mmocr/dataset_zoo/icdar2015/textdet.py

52 lines
1.9 KiB
Python

data_root = 'data/icdar2015'
cache_path = 'data/cache'
data_obtainer = dict(
type='NaiveDataObtainer',
cache_path=cache_path,
data_root=data_root,
files=[
dict(
url='https://rrc.cvc.uab.es/downloads/ch4_training_images.zip',
save_name='ic15_textdet_train_img.zip',
md5='c51cbace155dcc4d98c8dd19d378f30d',
split=['train'],
content=['image'],
mapping=[['ic15_textdet_train_img', 'textdet_imgs/train']]),
dict(
url='https://rrc.cvc.uab.es/downloads/ch4_test_images.zip',
save_name='ic15_textdet_test_img.zip',
md5='97e4c1ddcf074ffcc75feff2b63c35dd',
split=['test'],
content=['image'],
mapping=[['ic15_textdet_test_img', 'textdet_imgs/test']]),
dict(
url='https://rrc.cvc.uab.es/downloads/'
'ch4_training_localization_transcription_gt.zip',
save_name='ic15_textdet_train_gt.zip',
md5='3bfaf1988960909014f7987d2343060b',
split=['train'],
content=['annotation'],
mapping=[['ic15_textdet_train_gt', 'annotations/train']]),
dict(
url='https://rrc.cvc.uab.es/downloads/'
'Challenge4_Test_Task4_GT.zip',
save_name='ic15_textdet_test_gt.zip',
md5='8bce173b06d164b98c357b0eb96ef430',
split=['test'],
content=['annotation'],
mapping=[['ic15_textdet_test_gt', 'annotations/test']]),
])
data_converter = dict(
type='TextDetDataConverter',
splits=['train', 'test'],
data_root=data_root,
gatherer=dict(
type='pair_gather',
suffixes=['.jpg', '.JPG'],
rule=[r'img_(\d+)\.([jJ][pP][gG])', r'gt_img_\1.txt']),
parser=dict(type='ICDARTxtTextDetAnnParser'),
dumper=dict(type='JsonDumper'),
delete=['annotations', 'ic15_textdet_test_img', 'ic15_textdet_train_img'])