mmocr/tests/models/textrecog/decoders/test_abi_fuser.py
2022-07-21 10:58:04 +08:00

122 lines
3.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
from unittest import TestCase
import torch
from mmocr.models.textrecog.decoders import ABIFuser
from mmocr.testing import create_dummy_dict_file
class TestABINetFuser(TestCase):
def setUp(self):
self.tmp_dir = tempfile.TemporaryDirectory()
self.dict_file = osp.join(self.tmp_dir.name, 'fake_chars.txt')
create_dummy_dict_file(self.dict_file)
self.dict_cfg = dict(
type='Dictionary',
dict_file=self.dict_file,
with_start=True,
with_end=True,
same_start_end=False,
with_padding=False,
with_unknown=False)
# both max_seq_len has been set
with self.assertWarns(Warning):
ABIFuser(
self.dict_cfg,
max_seq_len=10,
vision_decoder=dict(
type='ABIVisionDecoder',
in_channels=2,
num_channels=2,
max_seq_len=5),
language_decoder=dict(
type='ABILanguageDecoder',
d_model=2,
n_head=2,
d_inner=16,
n_layers=1,
max_seq_len=5))
# both dictionaries have been set
with self.assertWarns(Warning):
ABIFuser(
self.dict_cfg,
max_seq_len=10,
vision_decoder=dict(
type='ABIVisionDecoder',
in_channels=2,
num_channels=2,
dictionary=self.dict_cfg),
language_decoder=dict(
type='ABILanguageDecoder',
d_model=2,
n_head=2,
d_inner=16,
n_layers=1,
dictionary=self.dict_cfg))
def tearDown(self):
self.tmp_dir.cleanup()
def test_init(self):
# No ending idx
with self.assertRaises(AssertionError):
dict_cfg = dict(
type='Dictionary', dict_file=self.dict_file, with_end=False)
ABIFuser(dict_cfg, None)
def test_forward_full_model(self):
# Full model
model = ABIFuser(
self.dict_cfg,
max_seq_len=10,
vision_decoder=dict(
type='ABIVisionDecoder', in_channels=2, num_channels=2),
language_decoder=dict(
type='ABILanguageDecoder',
d_model=2,
n_head=2,
d_inner=16,
n_layers=1,
),
d_model=2)
model.train()
result = model(None, torch.randn(1, 2, 8, 32))
self.assertIsInstance(result, dict)
self.assertIn('out_vis', result)
self.assertIn('out_langs', result)
self.assertIsInstance(result['out_langs'], list)
self.assertIn('out_fusers', result)
self.assertIsInstance(result['out_fusers'], list)
model.eval()
result = model(None, torch.randn(1, 2, 8, 32))
self.assertIsInstance(result, torch.Tensor)
def test_forward_vision_model(self):
# Full model
model = ABIFuser(
self.dict_cfg,
vision_decoder=dict(
type='ABIVisionDecoder', in_channels=2, num_channels=2))
model.train()
result = model(None, torch.randn(1, 2, 8, 32))
self.assertIsInstance(result, dict)
self.assertIn('out_vis', result)
self.assertIn('out_langs', result)
self.assertIsInstance(result['out_langs'], list)
self.assertEqual(len(result['out_langs']), 0)
self.assertIn('out_fusers', result)
self.assertIsInstance(result['out_fusers'], list)
self.assertEqual(len(result['out_fusers']), 0)
model.eval()
result = model(None, torch.randn(1, 2, 8, 32))
self.assertIsInstance(result, torch.Tensor)