mirror of https://github.com/open-mmlab/mmocr.git
374 lines
12 KiB
Python
374 lines
12 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
||
import copy
|
||
import unittest.mock as mock
|
||
|
||
import numpy as np
|
||
import pytest
|
||
import torchvision.transforms as TF
|
||
from mmdet.core import BitmapMasks, PolygonMasks
|
||
from PIL import Image
|
||
|
||
import mmocr.datasets.pipelines.transforms as transforms
|
||
|
||
|
||
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
|
||
@mock.patch('%s.transforms.np.random.randint' % __name__)
|
||
def test_random_crop_instances(mock_randint, mock_sample):
|
||
|
||
img_gt = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 1, 1],
|
||
[0, 0, 1, 1, 1], [0, 0, 1, 1, 1]])
|
||
# test target is bigger than img size in sample_offset
|
||
mock_sample.side_effect = [1]
|
||
rci = transforms.RandomCropInstances(6, instance_key='gt_kernels')
|
||
(i, j) = rci.sample_offset(img_gt, (5, 5))
|
||
assert i == 0
|
||
assert j == 0
|
||
|
||
# test the second branch in sample_offset
|
||
|
||
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
|
||
mock_sample.side_effect = [1]
|
||
mock_randint.side_effect = [1, 2]
|
||
(i, j) = rci.sample_offset(img_gt, (5, 5))
|
||
assert i == 1
|
||
assert j == 2
|
||
|
||
mock_sample.side_effect = [1]
|
||
mock_randint.side_effect = [1, 2]
|
||
rci = transforms.RandomCropInstances(5, instance_key='gt_kernels')
|
||
(i, j) = rci.sample_offset(img_gt, (5, 5))
|
||
assert i == 0
|
||
assert j == 0
|
||
|
||
# test the first bracnh is sample_offset
|
||
|
||
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
|
||
mock_sample.side_effect = [0.1]
|
||
mock_randint.side_effect = [1, 1]
|
||
(i, j) = rci.sample_offset(img_gt, (5, 5))
|
||
assert i == 1
|
||
assert j == 1
|
||
|
||
# test crop_img(img, offset, target_size)
|
||
|
||
img = img_gt
|
||
offset = [0, 0]
|
||
target = [6, 6]
|
||
crop = rci.crop_img(img, offset, target)
|
||
assert np.allclose(img, crop[0])
|
||
assert np.allclose(crop[1], [0, 0, 5, 5])
|
||
|
||
target = [3, 2]
|
||
crop = rci.crop_img(img, offset, target)
|
||
assert np.allclose(np.array([[0, 0], [0, 0], [0, 0]]), crop[0])
|
||
assert np.allclose(crop[1], [0, 0, 2, 3])
|
||
|
||
# test crop_bboxes
|
||
canvas_box = np.array([2, 3, 5, 5])
|
||
bboxes = np.array([[2, 3, 4, 4], [0, 0, 1, 1], [1, 2, 4, 4],
|
||
[0, 0, 10, 10]])
|
||
kept_bboxes, kept_idx = rci.crop_bboxes(bboxes, canvas_box)
|
||
assert np.allclose(kept_bboxes,
|
||
np.array([[0, 0, 2, 1], [0, 0, 2, 1], [0, 0, 3, 2]]))
|
||
assert kept_idx == [0, 2, 3]
|
||
|
||
bboxes = np.array([[10, 10, 11, 11], [0, 0, 1, 1]])
|
||
kept_bboxes, kept_idx = rci.crop_bboxes(bboxes, canvas_box)
|
||
assert kept_bboxes.size == 0
|
||
assert kept_bboxes.shape == (0, 4)
|
||
assert len(kept_idx) == 0
|
||
|
||
# test __call__
|
||
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
|
||
results = {}
|
||
gt_kernels = [img_gt, img_gt.copy()]
|
||
results['gt_kernels'] = BitmapMasks(gt_kernels, 5, 5)
|
||
results['img'] = img_gt.copy()
|
||
results['mask_fields'] = ['gt_kernels']
|
||
mock_sample.side_effect = [0.1]
|
||
mock_randint.side_effect = [1, 1]
|
||
output = rci(results)
|
||
target = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]])
|
||
assert output['img_shape'] == (3, 3)
|
||
|
||
assert np.allclose(output['img'], target)
|
||
|
||
assert np.allclose(output['gt_kernels'].masks[0], target)
|
||
assert np.allclose(output['gt_kernels'].masks[1], target)
|
||
|
||
|
||
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
|
||
def test_scale_aspect_jitter(mock_random):
|
||
img_scale = [(3000, 1000)] # unused
|
||
ratio_range = (0.5, 1.5)
|
||
aspect_ratio_range = (1, 1)
|
||
multiscale_mode = 'value'
|
||
long_size_bound = 2000
|
||
short_size_bound = 640
|
||
resize_type = 'long_short_bound'
|
||
keep_ratio = False
|
||
jitter = transforms.ScaleAspectJitter(
|
||
img_scale=img_scale,
|
||
ratio_range=ratio_range,
|
||
aspect_ratio_range=aspect_ratio_range,
|
||
multiscale_mode=multiscale_mode,
|
||
long_size_bound=long_size_bound,
|
||
short_size_bound=short_size_bound,
|
||
resize_type=resize_type,
|
||
keep_ratio=keep_ratio)
|
||
mock_random.side_effect = [0.5]
|
||
|
||
# test sample_from_range
|
||
|
||
result = jitter.sample_from_range([100, 200])
|
||
assert result == 150
|
||
|
||
# test _random_scale
|
||
results = {}
|
||
results['img'] = np.zeros((4000, 1000))
|
||
mock_random.side_effect = [0.5, 1]
|
||
jitter._random_scale(results)
|
||
# scale1 0.5, scale2=1 scale =0.5 650/1000, w, h
|
||
# print(results['scale'])
|
||
assert results['scale'] == (650, 2600)
|
||
|
||
|
||
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
|
||
def test_random_rotate(mock_random):
|
||
|
||
mock_random.side_effect = [0.5, 0]
|
||
results = {}
|
||
img = np.random.rand(5, 5)
|
||
results['img'] = img.copy()
|
||
results['mask_fields'] = ['masks']
|
||
gt_kernels = [results['img'].copy()]
|
||
results['masks'] = BitmapMasks(gt_kernels, 5, 5)
|
||
|
||
rotater = transforms.RandomRotateTextDet()
|
||
|
||
results = rotater(results)
|
||
assert np.allclose(results['img'], img)
|
||
assert np.allclose(results['masks'].masks, img)
|
||
|
||
|
||
def test_color_jitter():
|
||
img = np.ones((64, 256, 3), dtype=np.uint8)
|
||
results = {'img': img}
|
||
|
||
pt_official_color_jitter = TF.ColorJitter()
|
||
output1 = pt_official_color_jitter(img)
|
||
|
||
color_jitter = transforms.ColorJitter()
|
||
output2 = color_jitter(results)
|
||
|
||
assert np.allclose(output1, output2['img'])
|
||
|
||
|
||
def test_affine_jitter():
|
||
img = np.ones((64, 256, 3), dtype=np.uint8)
|
||
results = {'img': img}
|
||
|
||
pt_official_affine_jitter = TF.RandomAffine(degrees=0)
|
||
output1 = pt_official_affine_jitter(Image.fromarray(img))
|
||
|
||
affine_jitter = transforms.AffineJitter(
|
||
degrees=0,
|
||
translate=None,
|
||
scale=None,
|
||
shear=None,
|
||
resample=False,
|
||
fillcolor=0)
|
||
output2 = affine_jitter(results)
|
||
|
||
assert np.allclose(np.array(output1), output2['img'])
|
||
|
||
|
||
def test_random_scale():
|
||
h, w, c = 100, 100, 3
|
||
img = np.ones((h, w, c), dtype=np.uint8)
|
||
results = {'img': img, 'img_shape': (h, w, c)}
|
||
|
||
polygon = np.array([0., 0., 0., 10., 10., 10., 10., 0.])
|
||
|
||
results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2]))
|
||
results['mask_fields'] = ['gt_masks']
|
||
|
||
size = 100
|
||
scale = (2., 2.)
|
||
random_scaler = transforms.RandomScaling(size=size, scale=scale)
|
||
|
||
results = random_scaler(results)
|
||
|
||
out_img = results['img']
|
||
out_poly = results['gt_masks'].masks[0][0]
|
||
gt_poly = polygon * 2
|
||
|
||
assert np.allclose(out_img.shape, (2 * h, 2 * w, c))
|
||
assert np.allclose(out_poly, gt_poly)
|
||
|
||
|
||
@mock.patch('%s.transforms.np.random.randint' % __name__)
|
||
def test_random_crop_flip(mock_randint):
|
||
img = np.ones((10, 10, 3), dtype=np.uint8)
|
||
img[0, 0, :] = 0
|
||
results = {'img': img, 'img_shape': img.shape}
|
||
|
||
polygon = np.array([0., 0., 0., 10., 10., 10., 10., 0.])
|
||
|
||
results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2]))
|
||
results['gt_masks_ignore'] = PolygonMasks([], *(img.shape[:2]))
|
||
results['mask_fields'] = ['gt_masks', 'gt_masks_ignore']
|
||
|
||
crop_ratio = 1.1
|
||
iter_num = 3
|
||
random_crop_fliper = transforms.RandomCropFlip(
|
||
crop_ratio=crop_ratio, iter_num=iter_num)
|
||
|
||
# test crop_target
|
||
pad_ratio = 0.1
|
||
h, w = img.shape[:2]
|
||
pad_h = int(h * pad_ratio)
|
||
pad_w = int(w * pad_ratio)
|
||
all_polys = results['gt_masks'].masks
|
||
h_axis, w_axis = random_crop_fliper.generate_crop_target(
|
||
img, all_polys, pad_h, pad_w)
|
||
|
||
assert np.allclose(h_axis, (0, 11))
|
||
assert np.allclose(w_axis, (0, 11))
|
||
|
||
# test __call__
|
||
polygon = np.array([1., 1., 1., 9., 9., 9., 9., 1.])
|
||
results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2]))
|
||
results['gt_masks_ignore'] = PolygonMasks([[polygon]], *(img.shape[:2]))
|
||
|
||
mock_randint.side_effect = [0, 1, 2]
|
||
results = random_crop_fliper(results)
|
||
|
||
out_img = results['img']
|
||
out_poly = results['gt_masks'].masks[0][0]
|
||
gt_img = img
|
||
gt_poly = polygon
|
||
|
||
assert np.allclose(out_img, gt_img)
|
||
assert np.allclose(out_poly, gt_poly)
|
||
|
||
|
||
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
|
||
@mock.patch('%s.transforms.np.random.randint' % __name__)
|
||
def test_random_crop_poly_instances(mock_randint, mock_sample):
|
||
results = {}
|
||
img = np.zeros((30, 30, 3))
|
||
poly_masks = PolygonMasks([[
|
||
np.array([5., 5., 25., 5., 25., 10., 5., 10.])
|
||
], [np.array([5., 20., 25., 20., 25., 25., 5., 25.])]], 30, 30)
|
||
results['img'] = img
|
||
results['gt_masks'] = poly_masks
|
||
results['gt_masks_ignore'] = PolygonMasks([], 30, 30)
|
||
results['mask_fields'] = ['gt_masks', 'gt_masks_ignore']
|
||
results['gt_labels'] = [1, 1]
|
||
rcpi = transforms.RandomCropPolyInstances(
|
||
instance_key='gt_masks', crop_ratio=1.0, min_side_ratio=0.3)
|
||
|
||
# test sample_crop_box(img_size, results)
|
||
mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 0, 0, 15]
|
||
crop_box = rcpi.sample_crop_box((30, 30), results)
|
||
assert np.allclose(np.array(crop_box), np.array([0, 0, 30, 15]))
|
||
|
||
# test __call__
|
||
mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 15, 0, 30]
|
||
mock_sample.side_effect = [0.1]
|
||
output = rcpi(results)
|
||
target = np.array([5., 5., 25., 5., 25., 10., 5., 10.])
|
||
assert len(output['gt_masks']) == 1
|
||
assert len(output['gt_masks_ignore']) == 0
|
||
assert np.allclose(output['gt_masks'].masks[0][0], target)
|
||
assert output['img'].shape == (15, 30, 3)
|
||
|
||
# test __call__ with blank instace_key masks
|
||
mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 15, 0, 30]
|
||
mock_sample.side_effect = [0.1]
|
||
rcpi = transforms.RandomCropPolyInstances(
|
||
instance_key='gt_masks_ignore', crop_ratio=1.0, min_side_ratio=0.3)
|
||
results['img'] = img
|
||
results['gt_masks'] = poly_masks
|
||
output = rcpi(results)
|
||
assert len(output['gt_masks']) == 2
|
||
assert np.allclose(output['gt_masks'].masks[0][0], poly_masks.masks[0][0])
|
||
assert np.allclose(output['gt_masks'].masks[1][0], poly_masks.masks[1][0])
|
||
assert output['img'].shape == (30, 30, 3)
|
||
|
||
|
||
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
|
||
def test_random_rotate_poly_instances(mock_sample):
|
||
results = {}
|
||
img = np.zeros((30, 30, 3))
|
||
poly_masks = PolygonMasks(
|
||
[[np.array([10., 10., 20., 10., 20., 20., 10., 20.])]], 30, 30)
|
||
results['img'] = img
|
||
results['gt_masks'] = poly_masks
|
||
results['mask_fields'] = ['gt_masks']
|
||
rrpi = transforms.RandomRotatePolyInstances(rotate_ratio=1.0, max_angle=90)
|
||
|
||
mock_sample.side_effect = [0., 1.]
|
||
output = rrpi(results)
|
||
assert np.allclose(output['gt_masks'].masks[0][0],
|
||
np.array([10., 20., 10., 10., 20., 10., 20., 20.]))
|
||
assert output['img'].shape == (30, 30, 3)
|
||
|
||
|
||
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
|
||
def test_square_resize_pad(mock_sample):
|
||
results = {}
|
||
img = np.zeros((15, 30, 3))
|
||
polygon = np.array([10., 5., 20., 5., 20., 10., 10., 10.])
|
||
poly_masks = PolygonMasks([[polygon]], 15, 30)
|
||
results['img'] = img
|
||
results['gt_masks'] = poly_masks
|
||
results['mask_fields'] = ['gt_masks']
|
||
srp = transforms.SquareResizePad(target_size=40, pad_ratio=0.5)
|
||
|
||
# test resize with padding
|
||
mock_sample.side_effect = [0.]
|
||
output = srp(results)
|
||
target = 4. / 3 * polygon
|
||
target[1::2] += 10.
|
||
assert np.allclose(output['gt_masks'].masks[0][0], target)
|
||
assert output['img'].shape == (40, 40, 3)
|
||
|
||
# test resize to square without padding
|
||
results['img'] = img
|
||
results['gt_masks'] = poly_masks
|
||
mock_sample.side_effect = [1.]
|
||
output = srp(results)
|
||
target = polygon.copy()
|
||
target[::2] *= 4. / 3
|
||
target[1::2] *= 8. / 3
|
||
assert np.allclose(output['gt_masks'].masks[0][0], target)
|
||
assert output['img'].shape == (40, 40, 3)
|
||
|
||
|
||
def test_pyramid_rescale():
|
||
img = np.random.randint(0, 256, size=(128, 100, 3), dtype=np.uint8)
|
||
x = {'img': copy.deepcopy(img)}
|
||
f = transforms.PyramidRescale()
|
||
results = f(x)
|
||
assert results['img'].shape == (128, 100, 3)
|
||
|
||
# Test invalid inputs
|
||
with pytest.raises(AssertionError):
|
||
transforms.PyramidRescale(base_shape=(128))
|
||
with pytest.raises(AssertionError):
|
||
transforms.PyramidRescale(base_shape=128)
|
||
with pytest.raises(AssertionError):
|
||
transforms.PyramidRescale(factor=[])
|
||
with pytest.raises(AssertionError):
|
||
transforms.PyramidRescale(randomize_factor=[])
|
||
with pytest.raises(AssertionError):
|
||
f({})
|
||
|
||
# Test factor = 0
|
||
f_derandomized = transforms.PyramidRescale(
|
||
factor=0, randomize_factor=False)
|
||
results = f_derandomized({'img': copy.deepcopy(img)})
|
||
assert np.all(results['img'] == img)
|