mirror of https://github.com/open-mmlab/mmocr.git
73 lines
1.7 KiB
Python
73 lines
1.7 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import pytest
|
|
import torch
|
|
|
|
from mmocr.models.textrecog.backbones import (ResNet31OCR, ResNetABI,
|
|
ShallowCNN, VeryDeepVgg)
|
|
|
|
|
|
def test_resnet31_ocr_backbone():
|
|
"""Test resnet backbone."""
|
|
with pytest.raises(AssertionError):
|
|
ResNet31OCR(2.5)
|
|
|
|
with pytest.raises(AssertionError):
|
|
ResNet31OCR(3, layers=5)
|
|
|
|
with pytest.raises(AssertionError):
|
|
ResNet31OCR(3, channels=5)
|
|
|
|
# Test ResNet18 forward
|
|
model = ResNet31OCR()
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 32, 160)
|
|
feat = model(imgs)
|
|
assert feat.shape == torch.Size([1, 512, 4, 40])
|
|
|
|
|
|
def test_vgg_deep_vgg_ocr_backbone():
|
|
|
|
model = VeryDeepVgg()
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 32, 160)
|
|
feats = model(imgs)
|
|
assert feats.shape == torch.Size([1, 512, 1, 41])
|
|
|
|
|
|
def test_shallow_cnn_ocr_backbone():
|
|
|
|
model = ShallowCNN()
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 1, 32, 100)
|
|
feat = model(imgs)
|
|
assert feat.shape == torch.Size([1, 512, 8, 25])
|
|
|
|
|
|
def test_resnet_abi():
|
|
"""Test resnet backbone."""
|
|
with pytest.raises(AssertionError):
|
|
ResNetABI(2.5)
|
|
|
|
with pytest.raises(AssertionError):
|
|
ResNetABI(3, arch_settings=5)
|
|
|
|
with pytest.raises(AssertionError):
|
|
ResNetABI(3, stem_channels=None)
|
|
|
|
with pytest.raises(AssertionError):
|
|
ResNetABI(arch_settings=[3, 4, 6, 6], strides=[1, 2, 1, 2, 1])
|
|
|
|
# Test forwarding
|
|
model = ResNetABI()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 32, 160)
|
|
feat = model(imgs)
|
|
assert feat.shape == torch.Size([1, 512, 8, 40])
|