mmocr/tests/test_models/test_ocr_backbone.py

73 lines
1.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmocr.models.textrecog.backbones import (ResNet31OCR, ResNetABI,
ShallowCNN, VeryDeepVgg)
def test_resnet31_ocr_backbone():
"""Test resnet backbone."""
with pytest.raises(AssertionError):
ResNet31OCR(2.5)
with pytest.raises(AssertionError):
ResNet31OCR(3, layers=5)
with pytest.raises(AssertionError):
ResNet31OCR(3, channels=5)
# Test ResNet18 forward
model = ResNet31OCR()
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 32, 160)
feat = model(imgs)
assert feat.shape == torch.Size([1, 512, 4, 40])
def test_vgg_deep_vgg_ocr_backbone():
model = VeryDeepVgg()
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 32, 160)
feats = model(imgs)
assert feats.shape == torch.Size([1, 512, 1, 41])
def test_shallow_cnn_ocr_backbone():
model = ShallowCNN()
model.init_weights()
model.train()
imgs = torch.randn(1, 1, 32, 100)
feat = model(imgs)
assert feat.shape == torch.Size([1, 512, 8, 25])
def test_resnet_abi():
"""Test resnet backbone."""
with pytest.raises(AssertionError):
ResNetABI(2.5)
with pytest.raises(AssertionError):
ResNetABI(3, arch_settings=5)
with pytest.raises(AssertionError):
ResNetABI(3, stem_channels=None)
with pytest.raises(AssertionError):
ResNetABI(arch_settings=[3, 4, 6, 6], strides=[1, 2, 1, 2, 1])
# Test forwarding
model = ResNetABI()
model.train()
imgs = torch.randn(1, 3, 32, 160)
feat = model(imgs)
assert feat.shape == torch.Size([1, 512, 8, 40])