12 KiB
Testing
We introduce the way to test pretrained models on datasets here.
Testing on a Single GPU
You can use tools/test.py
to perform single CPU/GPU inference. For example, to evaluate DBNet on IC15: (You can download pretrained models from Model Zoo):
./tools/dist_test.sh configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth --eval hmean-iou
And here is the full usage of the script:
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]
By default, MMOCR prefers GPU(s) to CPU. If you want to test a model on CPU, please empty `CUDA_VISIBLE_DEVICES` or set it to -1 to make GPU(s) invisible to the program. Note that running CPU tests requires **MMCV >= 1.4.4**.
```bash
CUDA_VISIBLE_DEVICES= python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]
```
ARGS | Type | Description |
---|---|---|
--out |
str | Output result file in pickle format. |
--fuse-conv-bn |
bool | Path to the custom config of the selected det model. |
--format-only |
bool | Format the output results without performing evaluation. It is useful when you want to format the results to a specific format and submit them to the test server. |
--gpu-id |
int | GPU id to use. Only applicable to non-distributed training. |
--eval |
'hmean-ic13', 'hmean-iou', 'acc', 'macro-f1' | The evaluation metrics. Options: 'hmean-ic13', 'hmean-iou' for text detection tasks, 'acc' for text recognition tasks, and 'macro-f1' for key information extraction tasks. |
--show |
bool | Whether to show results. |
--show-dir |
str | Directory where the output images will be saved. |
--show-score-thr |
float | Score threshold (default: 0.3). |
--gpu-collect |
bool | Whether to use gpu to collect results. |
--tmpdir |
str | The tmp directory used for collecting results from multiple workers, available when gpu-collect is not specified. |
--cfg-options |
str | Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="[a,b]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks are necessary and that no white space is allowed. |
--eval-options |
str | Custom options for evaluation, the key-value pair in xxx=yyy format will be kwargs for dataset.evaluate() function. |
--launcher |
'none', 'pytorch', 'slurm', 'mpi' | Options for job launcher. |
Testing on Multiple GPUs
MMOCR implements distributed testing with MMDistributedDataParallel
.
You can use the following command to test a dataset with multiple GPUs.
[PORT={PORT}] ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]
Arguments | Type | Description |
---|---|---|
PORT |
int | The master port that will be used by the machine with rank 0. Defaults to 29500. |
CONFIG_FILE |
str | The path to config. |
CHECKPOINT_FILE |
str | The path to the checkpoint. |
GPU_NUM |
int | The number of GPUs to be used per node. Defaults to 8. |
PY_ARGS |
str | Arguments to be parsed by tools/test.py . |
For example,
./tools/dist_test.sh configs/example_config.py work_dirs/example_exp/example_model_20200202.pth 1 --eval hmean-iou
Testing on Multiple Machines
You can launch a task on multiple machines connected to the same network.
NNODES=${NNODES} NODE_RANK=${NODE_RANK} PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]
Arguments | Type | Description |
---|---|---|
NNODES |
int | The number of nodes. |
NODE_RANK |
int | The rank of current node. |
PORT |
int | The master port that will be used by rank 0 node. Defaults to 29500. |
MASTER_ADDR |
str | The address of rank 0 node. Defaults to "127.0.0.1". |
CONFIG_FILE |
str | The path to config. |
CHECKPOINT_FILE |
str | The path to the checkpoint. |
GPU_NUM |
int | The number of GPUs to be used per node. Defaults to 8. |
PY_ARGS |
str | Arguments to be parsed by tools/test.py . |
MMOCR relies on torch.distributed package for distributed testing. Find more information at PyTorch’s [launch utility](https://pytorch.org/docs/stable/distributed.html#launch-utility).
Say that you want to launch a job on two machines. On the first machine:
NNODES=2 NODE_RANK=0 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]
On the second machine:
NNODES=2 NODE_RANK=1 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]
The speed of the network could be the bottleneck of testing.
Testing with Slurm
If you run MMOCR on a cluster managed with Slurm, you can use the script tools/slurm_test.sh
.
[GPUS=${GPUS}] [GPUS_PER_NODE=${GPUS_PER_NODE}] [SRUN_ARGS=${SRUN_ARGS}] ./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${CHECKPOINT_FILE} [PY_ARGS]
Arguments | Type | Description |
---|---|---|
GPUS |
int | The number of GPUs to be used by this task. Defaults to 8. |
GPUS_PER_NODE |
int | The number of GPUs to be allocated per node. Defaults to 8. |
SRUN_ARGS |
str | Arguments to be parsed by srun. Available options can be found here. |
PY_ARGS |
str | Arguments to be parsed by tools/test.py . |
Here is an example of using 8 GPUs to test an example model on the 'dev' partition with job name 'test_job'.
GPUS=8 ./tools/slurm_test.sh dev test_job configs/example_config.py work_dirs/example_exp/example_model_20200202.pth --eval hmean-iou
Batch Testing
By default, MMOCR tests the model image by image. For faster inference, you may change data.val_dataloader.samples_per_gpu
and data.test_dataloader.samples_per_gpu
in the config. For example,
data = dict(
...
val_dataloader=dict(samples_per_gpu=16),
test_dataloader=dict(samples_per_gpu=16),
...
)
will test the model with 16 images in a batch.
Batch testing may incur performance decrease of the model due to the different behavior of the data preprocessing pipeline.