mmocr/docs/zh_cn/datasets/recog.md

282 lines
21 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 文字识别
## 概览
**文字识别任务的数据集应按如下目录配置:**
```text
├── mixture
│   ├── coco_text
│ │ ├── train_label.txt
│ │ ├── train_words
│   ├── icdar_2011
│ │ ├── training_label.txt
│ │ ├── Challenge1_Training_Task3_Images_GT
│   ├── icdar_2013
│ │ ├── train_label.txt
│ │ ├── test_label_1015.txt
│ │ ├── test_label_1095.txt
│ │ ├── Challenge2_Training_Task3_Images_GT
│ │ ├── Challenge2_Test_Task3_Images
│   ├── icdar_2015
│ │ ├── train_label.txt
│ │ ├── test_label.txt
│ │ ├── ch4_training_word_images_gt
│ │ ├── ch4_test_word_images_gt
│   ├── III5K
│ │ ├── train_label.txt
│ │ ├── test_label.txt
│ │ ├── train
│ │ ├── test
│   ├── ct80
│ │ ├── test_label.txt
│ │ ├── image
│   ├── svt
│ │ ├── test_label.txt
│ │ ├── image
│   ├── svtp
│ │ ├── test_label.txt
│ │ ├── image
│   ├── Syn90k
│ │ ├── shuffle_labels.txt
│ │ ├── label.txt
│ │ ├── label.lmdb
│ │ ├── mnt
│   ├── SynthText
│ │ ├── alphanumeric_labels.txt
│ │ ├── shuffle_labels.txt
│ │ ├── instances_train.txt
│ │ ├── label.txt
│ │ ├── label.lmdb
│ │ ├── synthtext
│   ├── SynthAdd
│ │ ├── label.txt
│ │ ├── label.lmdb
│ │ ├── SynthText_Add
│   ├── TextOCR
│ │ ├── image
│ │ ├── train_label.txt
│ │ ├── val_label.txt
│   ├── Totaltext
│ │ ├── imgs
│ │ ├── annotations
│ │ ├── train_label.txt
│ │ ├── test_label.txt
│   ├── OpenVINO
│ │ ├── image_1
│ │ ├── image_2
│ │ ├── image_5
│ │ ├── image_f
│ │ ├── image_val
│ │ ├── train_1_label.txt
│ │ ├── train_2_label.txt
│ │ ├── train_5_label.txt
│ │ ├── train_f_label.txt
│ │ ├── val_label.txt
```
| 数据集名称 | 数据图片 | 标注文件 | 标注文件 |
| :-------------------: | :-------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------: |
| | | 训练集(training) | 测试集(test) |
| coco_text | [下载地址](https://rrc.cvc.uab.es/?ch=5&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt) | - |
| icdar_2011 | [下载地址](http://www.cvc.uab.es/icdar2011competition/?com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | - |
| icdar_2013 | [下载地址](https://rrc.cvc.uab.es/?ch=2&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt) | [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) |
| icdar_2015 | [下载地址](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt) |
| IIIT5K | [下载地址](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt) |
| ct80 | [下载地址](http://cs-chan.com/downloads_CUTE80_dataset.html) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt) |
| svt | [下载地址](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt) |
| svtp | [非官方下载地址\*](https://github.com/Jyouhou/Case-Sensitive-Scene-Text-Recognition-Datasets) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt) |
| MJSynth (Syn90k) | [下载地址](https://www.robots.ox.ac.uk/~vgg/data/text/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/label.txt) | - |
| SynthText (Synth800k) | [下载地址](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | [alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) \| [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) \| [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) | - |
| SynthAdd | [SynthText_Add.zip](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x) | [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt) | - |
| TextOCR | [下载地址](https://textvqa.org/textocr/dataset) | - | - |
| Totaltext | [下载地址](https://github.com/cs-chan/Total-Text-Dataset) | - | - |
| OpenVINO | [下载地址](https://github.com/cvdfoundation/open-images-dataset) | [下载地址](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | [下载地址](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) |
(*) 注:由于官方的下载地址已经无法访问,我们提供了一个非官方的地址以供参考,但我们无法保证数据的准确性。
## 准备步骤
### ICDAR 2013
- 第一步:从 [下载地址](https://rrc.cvc.uab.es/?ch=2&com=downloads) 下载 `Challenge2_Test_Task3_Images.zip``Challenge2_Training_Task3_Images_GT.zip`
- 第二步:下载 [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) 和 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt)
### ICDAR 2015
- 第一步:从 [下载地址](https://rrc.cvc.uab.es/?ch=4&com=downloads) 下载 `ch4_training_word_images_gt.zip``ch4_test_word_images_gt.zip`
- 第二步:下载 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) and [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt)
### IIIT5K
- 第一步:从 [下载地址](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) 下载 `IIIT5K-Word_V3.0.tar.gz`
- 第二步:下载 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) 和 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt)
### svt
- 第一步:从 [下载地址](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) 下载 `svt.zip`
- 第二步:下载 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt)
- 第三步:
```bash
python tools/data/textrecog/svt_converter.py <download_svt_dir_path>
```
### ct80
- 第一步:下载 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt)
### svtp
- 第一步:下载 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt)
### coco_text
- 第一步:从 [下载地址](https://rrc.cvc.uab.es/?ch=5&com=downloads) 下载文件
- 第二步:下载 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt)
### MJSynth (Syn90k)
- 第一步:从 [下载地址](https://www.robots.ox.ac.uk/~vgg/data/text/) 下载 `mjsynth.tar.gz`
- 第二步:下载 [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt)
- 第三步:
```bash
mkdir Syn90k && cd Syn90k
mv /path/to/mjsynth.tar.gz .
tar -xzf mjsynth.tar.gz
mv /path/to/shuffle_labels.txt .
mv /path/to/label.txt .
# 创建软链接
cd /path/to/mmocr/data/mixture
ln -s /path/to/Syn90k Syn90k
```
### SynthText (Synth800k)
- 第一步:下载 `SynthText.zip`: [下载地址](https://www.robots.ox.ac.uk/~vgg/data/scenetext/)
- 第二步:请根据你的实际需要,从下列标注中选择最适合的下载:[label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) 7,266,686个标注 [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) 2,400,000个随机采样的标注[alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) 7,239,272个仅包含数字和字母的标注[instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) 7,266,686个字符级别的标注
- 第三步:
```bash
mkdir SynthText && cd SynthText
mv /path/to/SynthText.zip .
unzip SynthText.zip
mv SynthText synthtext
mv /path/to/shuffle_labels.txt .
mv /path/to/label.txt .
mv /path/to/alphanumeric_labels.txt .
mv /path/to/instances_train.txt .
# 创建软链接
cd /path/to/mmocr/data/mixture
ln -s /path/to/SynthText SynthText
```
- 第四步:生成裁剪后的图像和标注:
```bash
cd /path/to/mmocr
python tools/data/textrecog/synthtext_converter.py data/mixture/SynthText/gt.mat data/mixture/SynthText/ data/mixture/SynthText/synthtext/SynthText_patch_horizontal --n_proc 8
```
### SynthAdd
- 第一步:从 [SynthAdd](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x) 下载 `SynthText_Add.zip`
- 第二步:下载 [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt)
- 第三步:
```bash
mkdir SynthAdd && cd SynthAdd
mv /path/to/SynthText_Add.zip .
unzip SynthText_Add.zip
mv /path/to/label.txt .
# 创建软链接
cd /path/to/mmocr/data/mixture
````{tip}
运行以下命令,可以把 `.txt` 格式的标注文件转换成 `.lmdb` 格式:
```bash
python tools/data/utils/txt2lmdb.py -i <txt_label_path> -o <lmdb_label_path>
```
例如:
```bash
python tools/data/utils/txt2lmdb.py -i data/mixture/Syn90k/label.txt -o data/mixture/Syn90k/label.lmdb
```
````
### TextOCR
- 第一步:下载 [train_val_images.zip](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)[TextOCR_0.1_train.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json) 和 [TextOCR_0.1_val.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json) 到 `textocr/` 目录.
```bash
mkdir textocr && cd textocr
# 下载 TextOCR 数据集
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json
wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json
# 对于数据图像
unzip -q train_val_images.zip
mv train_images train
```
- 第二步:用四个并行进程剪裁图像然后生成 `train_label.txt``val_label.txt` ,可以使用以下命令:
```bash
python tools/data/textrecog/textocr_converter.py /path/to/textocr 4
```
### Totaltext
- 第一步:从 [github dataset](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Dataset) 下载 `totaltext.zip`,然后从 [github Groundtruth](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Groundtruth/Text) 下载 `groundtruth_text.zip` (我们建议下载 `.mat` 格式的标注文件,因为我们提供的 `totaltext_converter.py` 标注格式转换工具只支持 `.mat` 文件)
```bash
mkdir totaltext && cd totaltext
mkdir imgs && mkdir annotations
# 对于图像数据
# 在 ./totaltext 目录下运行
unzip totaltext.zip
mv Images/Train imgs/training
mv Images/Test imgs/test
# 对于标注文件
unzip groundtruth_text.zip
cd Groundtruth
mv Polygon/Train ../annotations/training
mv Polygon/Test ../annotations/test
```
- 第二步:用以下命令生成经剪裁后的标注文件 `train_label.txt``test_label.txt` (剪裁后的图像会被保存在目录 `data/totaltext/dst_imgs/`
```bash
python tools/data/textrecog/totaltext_converter.py /path/to/totaltext -o /path/to/totaltext --split-list training test
```
### OpenVINO
- 第零步:安装 [awscli](https://aws.amazon.com/cli/)。
- 第一步:下载 [Open Images](https://github.com/cvdfoundation/open-images-dataset#download-images-with-bounding-boxes-annotations) 的子数据集 `train_1``train_2``train_5``train_f``validation``openvino/`
```bash
mkdir openvino && cd openvino
# 下载 Open Images 的子数据集
for s in 1 2 5 f; do
aws s3 --no-sign-request cp s3://open-images-dataset/tar/train_${s}.tar.gz .
done
aws s3 --no-sign-request cp s3://open-images-dataset/tar/validation.tar.gz .
# 下载标注文件
for s in 1 2 5 f; do
wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_train_${s}.json
done
wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_validation.json
# 解压数据集
mkdir -p openimages_v5/val
for s in 1 2 5 f; do
tar zxf train_${s}.tar.gz -C openimages_v5
done
tar zxf validation.tar.gz -C openimages_v5/val
```
- 第二步: 运行以下的命令以用4个进程生成标注 `train_{1,2,5,f}_label.txt``val_label.txt` 并裁剪原图:
```bash
python tools/data/textrecog/openvino_converter.py /path/to/openvino 4
```