mmocr/tests/test_evaluation/test_metrics/test_recog_metric.py

170 lines
4.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import unittest
from mmengine.data import LabelData
from mmocr.data import TextRecogDataSample
from mmocr.evaluation import CharMetric, OneMinusNEDMetric, WordMetric
class TestWordMetric(unittest.TestCase):
def setUp(self):
# prepare gt hello HELLO $HELLO$
gt1 = {
'data_sample': {
'height': 32,
'width': 100,
'instances': [{
'text': 'hello'
}]
}
}
gt2 = {
'data_sample': {
'height': 32,
'width': 100,
'instances': [{
'text': 'HELLO'
}]
}
}
gt3 = {
'data_sample': {
'height': 32,
'width': 100,
'instances': [{
'text': '$HELLO$'
}]
}
}
self.gt = [gt1, gt2, gt3]
# prepare pred
pred_data_sample = TextRecogDataSample()
pred_text = LabelData()
pred_text.item = 'hello'
pred_data_sample.pred_text = pred_text
self.pred = [
pred_data_sample,
copy.deepcopy(pred_data_sample),
copy.deepcopy(pred_data_sample),
]
def test_word_acc_metric(self):
metric = WordMetric(mode='exact')
metric.process(self.gt, self.pred)
eval_res = metric.evaluate(size=3)
self.assertAlmostEqual(eval_res['recog/word_acc'], 1. / 3, 4)
def test_word_acc_ignore_case_metric(self):
metric = WordMetric(mode='ignore_case')
metric.process(self.gt, self.pred)
eval_res = metric.evaluate(size=3)
self.assertAlmostEqual(eval_res['recog/word_acc_ignore_case'], 2. / 3,
4)
def test_word_acc_ignore_case_symbol_metric(self):
metric = WordMetric(mode='ignore_case_symbol')
metric.process(self.gt, self.pred)
eval_res = metric.evaluate(size=3)
self.assertEqual(eval_res['recog/word_acc_ignore_case_symbol'], 1.0)
def test_all_metric(self):
metric = WordMetric(
mode=['exact', 'ignore_case', 'ignore_case_symbol'])
metric.process(self.gt, self.pred)
eval_res = metric.evaluate(size=3)
self.assertAlmostEqual(eval_res['recog/word_acc'], 1. / 3, 4)
self.assertAlmostEqual(eval_res['recog/word_acc_ignore_case'], 2. / 3,
4)
self.assertEqual(eval_res['recog/word_acc_ignore_case_symbol'], 1.0)
class TestCharMetric(unittest.TestCase):
def setUp(self):
# prepare gt
gt1 = {
'data_sample': {
'height': 32,
'width': 100,
'instances': [{
'text': 'hello'
}]
}
}
gt2 = {
'data_sample': {
'height': 32,
'width': 100,
'instances': [{
'text': 'HELLO'
}]
}
}
self.gt = [gt1, gt2]
# prepare pred
pred_data_sample1 = TextRecogDataSample()
pred_text = LabelData()
pred_text.item = 'helL'
pred_data_sample1.pred_text = pred_text
pred_data_sample2 = TextRecogDataSample()
pred_text = LabelData()
pred_text.item = 'HEL'
pred_data_sample2.pred_text = pred_text
self.pred = [pred_data_sample1, pred_data_sample2]
def test_char_recall_precision_metric(self):
metric = CharMetric()
metric.process(self.gt, self.pred)
eval_res = metric.evaluate(size=2)
self.assertEqual(eval_res['recog/char_recall'], 0.7)
self.assertEqual(eval_res['recog/char_precision'], 1)
class TestOneMinusNED(unittest.TestCase):
def setUp(self):
# prepare gt
gt1 = {
'data_sample': {
'height': 32,
'width': 100,
'instances': [{
'text': 'hello'
}]
}
}
gt2 = {
'data_sample': {
'height': 32,
'width': 100,
'instances': [{
'text': 'HELLO'
}]
}
}
self.gt = [gt1, gt2]
# prepare pred
pred_data_sample1 = TextRecogDataSample()
pred_text = LabelData()
pred_text.item = 'pred_helL'
pred_data_sample1.pred_text = pred_text
pred_data_sample2 = TextRecogDataSample()
pred_text = LabelData()
pred_text.item = 'HEL'
pred_data_sample2.pred_text = pred_text
self.pred = [pred_data_sample1, pred_data_sample2]
def test_one_minus_ned_metric(self):
metric = OneMinusNEDMetric()
metric.process(self.gt, self.pred)
eval_res = metric.evaluate(size=2)
self.assertEqual(eval_res['recog/1-N.E.D'], 0.4875)