mirror of https://github.com/open-mmlab/mmocr.git
161 lines
5.2 KiB
Python
161 lines
5.2 KiB
Python
dictionary = dict(
|
|
type='Dictionary',
|
|
dict_file='{{ fileDirname }}/../../../dicts/english_digits_symbols.txt',
|
|
with_padding=True,
|
|
with_unknown=True,
|
|
same_start_end=True,
|
|
with_start=True,
|
|
with_end=True)
|
|
|
|
model = dict(
|
|
type='MASTER',
|
|
backbone=dict(
|
|
type='ResNet',
|
|
in_channels=3,
|
|
stem_channels=[64, 128],
|
|
block_cfgs=dict(
|
|
type='BasicBlock',
|
|
plugins=dict(
|
|
cfg=dict(
|
|
type='GCAModule',
|
|
ratio=0.0625,
|
|
n_head=1,
|
|
pooling_type='att',
|
|
is_att_scale=False,
|
|
fusion_type='channel_add'),
|
|
position='after_conv2')),
|
|
arch_layers=[1, 2, 5, 3],
|
|
arch_channels=[256, 256, 512, 512],
|
|
strides=[1, 1, 1, 1],
|
|
plugins=[
|
|
dict(
|
|
cfg=dict(type='Maxpool2d', kernel_size=2, stride=(2, 2)),
|
|
stages=(True, True, False, False),
|
|
position='before_stage'),
|
|
dict(
|
|
cfg=dict(type='Maxpool2d', kernel_size=(2, 1), stride=(2, 1)),
|
|
stages=(False, False, True, False),
|
|
position='before_stage'),
|
|
dict(
|
|
cfg=dict(
|
|
type='ConvModule',
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
norm_cfg=dict(type='BN'),
|
|
act_cfg=dict(type='ReLU')),
|
|
stages=(True, True, True, True),
|
|
position='after_stage')
|
|
],
|
|
init_cfg=[
|
|
dict(type='Kaiming', layer='Conv2d'),
|
|
dict(type='Constant', val=1, layer='BatchNorm2d'),
|
|
]),
|
|
encoder=None,
|
|
decoder=dict(
|
|
type='MasterDecoder',
|
|
d_model=512,
|
|
n_head=8,
|
|
attn_drop=0.,
|
|
ffn_drop=0.,
|
|
d_inner=2048,
|
|
n_layers=3,
|
|
feat_pe_drop=0.2,
|
|
feat_size=6 * 40,
|
|
postprocessor=dict(type='AttentionPostprocessor'),
|
|
module_loss=dict(
|
|
type='CEModuleLoss', reduction='mean', ignore_first_char=True),
|
|
max_seq_len=30,
|
|
dictionary=dictionary),
|
|
data_preprocessor=dict(
|
|
type='TextRecogDataPreprocessor',
|
|
mean=[127.5, 127.5, 127.5],
|
|
std=[127.5, 127.5, 127.5]))
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile', ignore_empty=True, min_size=2),
|
|
dict(type='LoadOCRAnnotations', with_text=True),
|
|
dict(
|
|
type='RescaleToHeight',
|
|
height=48,
|
|
min_width=48,
|
|
max_width=160,
|
|
width_divisor=16),
|
|
dict(type='PadToWidth', width=160),
|
|
dict(
|
|
type='PackTextRecogInputs',
|
|
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
|
]
|
|
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='RescaleToHeight',
|
|
height=48,
|
|
min_width=48,
|
|
max_width=160,
|
|
width_divisor=16),
|
|
dict(type='PadToWidth', width=160),
|
|
# add loading annotation after ``Resize`` because ground truth
|
|
# does not need to do resize data transform
|
|
dict(type='LoadOCRAnnotations', with_text=True),
|
|
dict(
|
|
type='PackTextRecogInputs',
|
|
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
|
]
|
|
|
|
tta_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='TestTimeAug',
|
|
transforms=[
|
|
[
|
|
dict(
|
|
type='ConditionApply',
|
|
true_transforms=[
|
|
dict(
|
|
type='ImgAugWrapper',
|
|
args=[dict(cls='Rot90', k=0, keep_size=False)])
|
|
],
|
|
condition="results['img_shape'][1]<results['img_shape'][0]"
|
|
),
|
|
dict(
|
|
type='ConditionApply',
|
|
true_transforms=[
|
|
dict(
|
|
type='ImgAugWrapper',
|
|
args=[dict(cls='Rot90', k=1, keep_size=False)])
|
|
],
|
|
condition="results['img_shape'][1]<results['img_shape'][0]"
|
|
),
|
|
dict(
|
|
type='ConditionApply',
|
|
true_transforms=[
|
|
dict(
|
|
type='ImgAugWrapper',
|
|
args=[dict(cls='Rot90', k=3, keep_size=False)])
|
|
],
|
|
condition="results['img_shape'][1]<results['img_shape'][0]"
|
|
),
|
|
],
|
|
[
|
|
dict(
|
|
type='RescaleToHeight',
|
|
height=48,
|
|
min_width=48,
|
|
max_width=160,
|
|
width_divisor=16)
|
|
],
|
|
[dict(type='PadToWidth', width=160)],
|
|
# add loading annotation after ``Resize`` because ground truth
|
|
# does not need to do resize data transform
|
|
[dict(type='LoadOCRAnnotations', with_text=True)],
|
|
[
|
|
dict(
|
|
type='PackTextRecogInputs',
|
|
meta_keys=('img_path', 'ori_shape', 'img_shape',
|
|
'valid_ratio'))
|
|
]
|
|
])
|
|
]
|