mirror of https://github.com/open-mmlab/mmocr.git
160 lines
4.6 KiB
Python
160 lines
4.6 KiB
Python
dictionary = dict(
|
|
type='Dictionary',
|
|
dict_file='{{ fileDirname }}/../../../dicts/lower_english_digits.txt',
|
|
with_padding=True,
|
|
with_unknown=True,
|
|
)
|
|
|
|
model = dict(
|
|
type='SVTR',
|
|
preprocessor=dict(
|
|
type='STN',
|
|
in_channels=3,
|
|
resized_image_size=(32, 64),
|
|
output_image_size=(32, 100),
|
|
num_control_points=20,
|
|
margins=[0.05, 0.05]),
|
|
encoder=dict(
|
|
type='SVTREncoder',
|
|
img_size=[32, 100],
|
|
in_channels=3,
|
|
out_channels=192,
|
|
embed_dims=[64, 128, 256],
|
|
depth=[3, 6, 3],
|
|
num_heads=[2, 4, 8],
|
|
mixer_types=['Local'] * 6 + ['Global'] * 6,
|
|
window_size=[[7, 11], [7, 11], [7, 11]],
|
|
merging_types='Conv',
|
|
prenorm=False,
|
|
max_seq_len=25),
|
|
decoder=dict(
|
|
type='SVTRDecoder',
|
|
in_channels=192,
|
|
module_loss=dict(
|
|
type='CTCModuleLoss', letter_case='lower', zero_infinity=True),
|
|
postprocessor=dict(type='CTCPostProcessor'),
|
|
dictionary=dictionary),
|
|
data_preprocessor=dict(
|
|
type='TextRecogDataPreprocessor', mean=[127.5], std=[127.5]))
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile', ignore_empty=True, min_size=5),
|
|
dict(type='LoadOCRAnnotations', with_text=True),
|
|
dict(
|
|
type='RandomApply',
|
|
prob=0.4,
|
|
transforms=[
|
|
dict(type='TextRecogGeneralAug', ),
|
|
],
|
|
),
|
|
dict(
|
|
type='RandomApply',
|
|
prob=0.4,
|
|
transforms=[
|
|
dict(type='CropHeight', ),
|
|
],
|
|
),
|
|
dict(
|
|
type='ConditionApply',
|
|
condition='min(results["img_shape"])>10',
|
|
true_transforms=dict(
|
|
type='RandomApply',
|
|
prob=0.4,
|
|
transforms=[
|
|
dict(
|
|
type='TorchVisionWrapper',
|
|
op='GaussianBlur',
|
|
kernel_size=5,
|
|
sigma=1,
|
|
),
|
|
],
|
|
)),
|
|
dict(
|
|
type='RandomApply',
|
|
prob=0.4,
|
|
transforms=[
|
|
dict(
|
|
type='TorchVisionWrapper',
|
|
op='ColorJitter',
|
|
brightness=0.5,
|
|
saturation=0.5,
|
|
contrast=0.5,
|
|
hue=0.1),
|
|
]),
|
|
dict(
|
|
type='RandomApply',
|
|
prob=0.4,
|
|
transforms=[
|
|
dict(type='ImageContentJitter', ),
|
|
],
|
|
),
|
|
dict(
|
|
type='RandomApply',
|
|
prob=0.4,
|
|
transforms=[
|
|
dict(
|
|
type='ImgAugWrapper',
|
|
args=[dict(cls='AdditiveGaussianNoise', scale=0.1**0.5)]),
|
|
],
|
|
),
|
|
dict(
|
|
type='RandomApply',
|
|
prob=0.4,
|
|
transforms=[
|
|
dict(type='ReversePixels', ),
|
|
],
|
|
),
|
|
dict(type='Resize', scale=(256, 64)),
|
|
dict(
|
|
type='PackTextRecogInputs',
|
|
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
|
]
|
|
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='Resize', scale=(256, 64)),
|
|
dict(type='LoadOCRAnnotations', with_text=True),
|
|
dict(
|
|
type='PackTextRecogInputs',
|
|
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
|
]
|
|
|
|
tta_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='TestTimeAug',
|
|
transforms=[[
|
|
dict(
|
|
type='ConditionApply',
|
|
true_transforms=[
|
|
dict(
|
|
type='ImgAugWrapper',
|
|
args=[dict(cls='Rot90', k=0, keep_size=False)])
|
|
],
|
|
condition="results['img_shape'][1]<results['img_shape'][0]"),
|
|
dict(
|
|
type='ConditionApply',
|
|
true_transforms=[
|
|
dict(
|
|
type='ImgAugWrapper',
|
|
args=[dict(cls='Rot90', k=1, keep_size=False)])
|
|
],
|
|
condition="results['img_shape'][1]<results['img_shape'][0]"),
|
|
dict(
|
|
type='ConditionApply',
|
|
true_transforms=[
|
|
dict(
|
|
type='ImgAugWrapper',
|
|
args=[dict(cls='Rot90', k=3, keep_size=False)])
|
|
],
|
|
condition="results['img_shape'][1]<results['img_shape'][0]"),
|
|
], [dict(type='Resize', scale=(256, 64))],
|
|
[dict(type='LoadOCRAnnotations', with_text=True)],
|
|
[
|
|
dict(
|
|
type='PackTextRecogInputs',
|
|
meta_keys=('img_path', 'ori_shape', 'img_shape',
|
|
'valid_ratio'))
|
|
]])
|
|
]
|