mmocr/configs/textrecog/satrn/satrn_academic.py
2022-07-21 10:51:01 +08:00

97 lines
2.8 KiB
Python

_base_ = [
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_5e.py',
'../../_base_/recog_models/satrn.py'
]
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
# dataset settings
dataset_type = 'OCRDataset'
data_root = 'tests/data/ocr_toy_dataset'
file_client_args = dict(backend='petrel')
model = dict(
type='SATRN',
backbone=dict(type='ShallowCNN', input_channels=3, hidden_dim=512),
encoder=dict(
type='SATRNEncoder',
n_layers=12,
n_head=8,
d_k=512 // 8,
d_v=512 // 8,
d_model=512,
n_position=100,
d_inner=512 * 4,
dropout=0.1),
decoder=dict(
type='NRTRDecoder',
n_layers=6,
d_embedding=512,
n_head=8,
d_model=512,
d_inner=512 * 4,
d_k=512 // 8,
d_v=512 // 8,
loss=dict(type='CELoss', flatten=True, ignore_first_char=True),
max_seq_len=25,
postprocessor=dict(type='AttentionPostprocessor')))
# optimizer
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadOCRAnnotations', with_text=True),
dict(type='Resize', scale=(100, 32), keep_ratio=False),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
# TODO Add Test Time Augmentation `MultiRotateAugOCR`
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='Resize', scale=(100, 32), keep_ratio=False),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio',
'instances'))
]
train_dataloader = dict(
batch_size=64,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='train_label.json',
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=64,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [
dict(
type='WordMetric', mode=['exact', 'ignore_case',
'ignore_case_symbol']),
dict(type='CharMetric')
]
test_evaluator = val_evaluator
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')