mmocr/tests/test_models/test_ocr_layer.py

57 lines
1.6 KiB
Python

import torch
from mmocr.models.textrecog.layers import (BasicBlock, Bottleneck,
PositionalEncoding,
TransformerDecoderLayer,
get_pad_mask, get_subsequent_mask)
from mmocr.models.textrecog.layers.conv_layer import conv3x3
def test_conv_layer():
conv3by3 = conv3x3(3, 6)
assert conv3by3.in_channels == 3
assert conv3by3.out_channels == 6
assert conv3by3.kernel_size == (3, 3)
x = torch.rand(1, 64, 224, 224)
# test basic block
basic_block = BasicBlock(64, 64)
assert basic_block.expansion == 1
out = basic_block(x)
assert out.shape == torch.Size([1, 64, 224, 224])
# test bottle neck
bottle_neck = Bottleneck(64, 64, downsample=True)
assert bottle_neck.expansion == 4
out = bottle_neck(x)
assert out.shape == torch.Size([1, 256, 224, 224])
def test_transformer_layer():
# test decoder_layer
decoder_layer = TransformerDecoderLayer()
in_dec = torch.rand(1, 30, 512)
out_enc = torch.rand(1, 128, 512)
out_dec = decoder_layer(in_dec, out_enc)
assert out_dec.shape == torch.Size([1, 30, 512])
# test positional_encoding
pos_encoder = PositionalEncoding()
x = torch.rand(1, 30, 512)
out = pos_encoder(x)
assert out.size() == x.size()
# test get pad mask
seq = torch.rand(1, 30)
pad_idx = 0
out = get_pad_mask(seq, pad_idx)
assert out.shape == torch.Size([1, 1, 30])
# test get_subsequent_mask
out_mask = get_subsequent_mask(seq)
assert out_mask.shape == torch.Size([1, 30, 30])