mirror of https://github.com/open-mmlab/mmocr.git
151 lines
8.5 KiB
Markdown
151 lines
8.5 KiB
Markdown
|
||
# 文字检测
|
||
|
||
## 概览
|
||
|
||
文字检测任务的数据集应按如下目录配置:
|
||
|
||
```text
|
||
├── ctw1500
|
||
│ ├── annotations
|
||
│ ├── imgs
|
||
│ ├── instances_test.json
|
||
│ └── instances_training.json
|
||
├── icdar2015
|
||
│ ├── imgs
|
||
│ ├── instances_test.json
|
||
│ └── instances_training.json
|
||
├── icdar2017
|
||
│ ├── imgs
|
||
│ ├── instances_training.json
|
||
│ └── instances_val.json
|
||
├── synthtext
|
||
│ ├── imgs
|
||
│ └── instances_training.lmdb
|
||
│ ├── data.mdb
|
||
│ └── lock.mdb
|
||
├── textocr
|
||
│ ├── train
|
||
│ ├── instances_training.json
|
||
│ └── instances_val.json
|
||
├── totaltext
|
||
│ ├── imgs
|
||
│ ├── instances_test.json
|
||
│ └── instances_training.json
|
||
```
|
||
|
||
| 数据集名称 | 数据图片 | | 标注文件 | |
|
||
| :---------: | :----------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: | :-------------------------------------: | :--------------------------------------------------------------------------------------------: |
|
||
| | | 训练集 (training) | 验证集 (validation) | 测试集 (testing) | |
|
||
| CTW1500 | [下载地址](https://github.com/Yuliang-Liu/Curve-Text-Detector) | - | - | - |
|
||
| ICDAR2015 | [下载地址](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_training.json) | - | [instances_test.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_test.json) |
|
||
| ICDAR2017 | [下载地址](https://rrc.cvc.uab.es/?ch=8&com=downloads) | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_training.json) | [instances_val.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_val.json) | - | | |
|
||
| Synthtext | [下载地址](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | instances_training.lmdb ([data.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/data.mdb), [lock.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/lock.mdb)) | - | - |
|
||
| TextOCR | [下载地址](https://textvqa.org/textocr/dataset) | - | - | -
|
||
| Totaltext | [下载地址](https://github.com/cs-chan/Total-Text-Dataset) | - | - | -
|
||
|
||
## 重要提醒
|
||
|
||
:::{note}
|
||
**若用户需要在 CTW1500, ICDAR 2015/2017 或 Totaltext 数据集上训练模型**, 请注意这些数据集中有部分图片的 EXIF 信息里保存着方向信息。MMCV 采用的 OpenCV 后端会默认根据方向信息对图片进行旋转;而由于数据集的标注是在原图片上进行的,这种冲突会使得部分训练样本失效。因此,用户应该在配置 pipeline 时使用 `dict(type='LoadImageFromFile', color_type='color_ignore_orientation')` 以避免 MMCV 的这一行为。(配置文件可参考 [DBNet](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py))
|
||
:::
|
||
|
||
|
||
## 准备步骤
|
||
|
||
### ICDAR 2015
|
||
- 第一步:从[下载地址](https://rrc.cvc.uab.es/?ch=4&com=downloads)下载 `ch4_training_images.zip`、`ch4_test_images.zip`、`ch4_training_localization_transcription_gt.zip`、`Challenge4_Test_Task1_GT.zip` 四个文件,分别对应训练集数据、测试集数据、训练集标注、测试集标注。
|
||
- 第二步:运行以下命令,移动数据集到对应文件夹
|
||
```bash
|
||
mkdir icdar2015 && cd icdar2015
|
||
mkdir imgs && mkdir annotations
|
||
# 移动数据到目录:
|
||
mv ch4_training_images imgs/training
|
||
mv ch4_test_images imgs/test
|
||
# 移动标注到目录:
|
||
mv ch4_training_localization_transcription_gt annotations/training
|
||
mv Challenge4_Test_Task1_GT annotations/test
|
||
```
|
||
- 第三步:下载 [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_training.json) 和 [instances_test.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_test.json),并放入 `icdar2015` 文件夹里。或者也可以用以下命令直接生成 `instances_training.json` 和 `instances_test.json`:
|
||
```bash
|
||
python tools/data/textdet/icdar_converter.py /path/to/icdar2015 -o /path/to/icdar2015 -d icdar2015 --split-list training test
|
||
```
|
||
|
||
### ICDAR 2017
|
||
- 与上述步骤类似。
|
||
|
||
### CTW1500
|
||
- 第一步:执行以下命令,从 [下载地址](https://github.com/Yuliang-Liu/Curve-Text-Detector) 下载 `train_images.zip`,`test_images.zip`,`train_labels.zip`,`test_labels.zip` 四个文件并配置到对应目录:
|
||
|
||
```bash
|
||
mkdir ctw1500 && cd ctw1500
|
||
mkdir imgs && mkdir annotations
|
||
|
||
# 下载并配置标注
|
||
cd annotations
|
||
wget -O train_labels.zip https://universityofadelaide.box.com/shared/static/jikuazluzyj4lq6umzei7m2ppmt3afyw.zip
|
||
wget -O test_labels.zip https://cloudstor.aarnet.edu.au/plus/s/uoeFl0pCN9BOCN5/download
|
||
unzip train_labels.zip && mv ctw1500_train_labels training
|
||
unzip test_labels.zip -d test
|
||
cd ..
|
||
# 下载并配置数据
|
||
cd imgs
|
||
wget -O train_images.zip https://universityofadelaide.box.com/shared/static/py5uwlfyyytbb2pxzq9czvu6fuqbjdh8.zip
|
||
wget -O test_images.zip https://universityofadelaide.box.com/shared/static/t4w48ofnqkdw7jyc4t11nsukoeqk9c3d.zip
|
||
unzip train_images.zip && mv train_images training
|
||
unzip test_images.zip && mv test_images test
|
||
```
|
||
- 第二步:执行以下命令,生成 `instances_training.json` 和 `instances_test.json`。
|
||
|
||
```bash
|
||
python tools/data/textdet/ctw1500_converter.py /path/to/ctw1500 -o /path/to/ctw1500 --split-list training test
|
||
```
|
||
|
||
### SynthText
|
||
|
||
- 下载 [data.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/data.mdb) 和 [lock.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/lock.mdb) 并放置到 `synthtext/instances_training.lmdb/` 中.
|
||
|
||
### TextOCR
|
||
- 第一步:下载 [train_val_images.zip](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip),[TextOCR_0.1_train.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json) 和 [TextOCR_0.1_val.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json) 到 `textocr` 文件夹里。
|
||
```bash
|
||
mkdir textocr && cd textocr
|
||
|
||
# 下载 TextOCR 数据集
|
||
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
|
||
wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json
|
||
wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json
|
||
|
||
# 把图片移到对应目录
|
||
unzip -q train_val_images.zip
|
||
mv train_images train
|
||
```
|
||
|
||
- 第二步:生成 `instances_training.json` 和 `instances_val.json`:
|
||
```bash
|
||
python tools/data/textdet/textocr_converter.py /path/to/textocr
|
||
```
|
||
|
||
### Totaltext
|
||
- 第一步:从 [github dataset](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Dataset) 下载 `totaltext.zip`,从 [github Groundtruth](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Groundtruth/Text) 下载 `groundtruth_text.zip` 。(建议下载 `.mat` 格式的标注文件,因为我们提供的标注格式转换脚本 `totaltext_converter.py` 仅支持 `.mat` 格式。)
|
||
```bash
|
||
mkdir totaltext && cd totaltext
|
||
mkdir imgs && mkdir annotations
|
||
|
||
# 图像
|
||
# 在 ./totaltext 中执行
|
||
unzip totaltext.zip
|
||
mv Images/Train imgs/training
|
||
mv Images/Test imgs/test
|
||
|
||
# 标注文件
|
||
unzip groundtruth_text.zip
|
||
cd Groundtruth
|
||
mv Polygon/Train ../annotations/training
|
||
mv Polygon/Test ../annotations/test
|
||
|
||
```
|
||
- 第二步:用以下命令生成 `instances_training.json` 和 `instances_test.json` :
|
||
```bash
|
||
python tools/data/textdet/totaltext_converter.py /path/to/totaltext -o /path/to/totaltext --split-list training test
|
||
```
|