mmocr/demo/image_demo.py

50 lines
1.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from argparse import ArgumentParser
import mmcv
from mmdet.apis import init_detector
from mmocr.apis.inference import model_inference
from mmocr.datasets import build_dataset # noqa: F401
from mmocr.models import build_detector # noqa: F401
def main():
parser = ArgumentParser()
parser.add_argument('img', help='Image file.')
parser.add_argument('config', help='Config file.')
parser.add_argument('checkpoint', help='Checkpoint file.')
parser.add_argument('out_file', help='Path to save visualized image.')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference.')
parser.add_argument(
'--imshow',
action='store_true',
help='Whether show image with OpenCV.')
args = parser.parse_args()
# build the model from a config file and a checkpoint file
model = init_detector(args.config, args.checkpoint, device=args.device)
if model.cfg.data.test['type'] == 'ConcatDataset':
model.cfg.data.test.pipeline = model.cfg.data.test['datasets'][
0].pipeline
# test a single image
result = model_inference(model, args.img)
print(f'result: {result}')
# show the results
img = model.show_result(
args.img, result, out_file=args.out_file, show=False)
if img is None:
img = mmcv.imread(args.img)
mmcv.imwrite(img, args.out_file)
if args.imshow:
mmcv.imshow(img, 'predicted results')
if __name__ == '__main__':
main()