mirror of https://github.com/open-mmlab/mmocr.git
118 lines
4.1 KiB
Python
118 lines
4.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import os.path as osp
|
|
|
|
from mmengine.config import Config, DictAction
|
|
from mmengine.logging import print_log
|
|
from mmengine.registry import RUNNERS
|
|
from mmengine.runner import Runner
|
|
|
|
from mmocr.utils import register_all_modules
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Train a model')
|
|
parser.add_argument('config', help='Train config file path')
|
|
parser.add_argument('--work-dir', help='The dir to save logs and models')
|
|
parser.add_argument(
|
|
'--resume', action='store_true', help='Whether to resume checkpoint.')
|
|
parser.add_argument(
|
|
'--amp',
|
|
action='store_true',
|
|
default=False,
|
|
help='Enable automatic-mixed-precision training')
|
|
parser.add_argument(
|
|
'--auto-scale-lr',
|
|
action='store_true',
|
|
help='Whether to scale the learning rate automatically. It requires '
|
|
'`auto_scale_lr` in config, and `base_batch_size` in `auto_scale_lr`')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='Override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='Job launcher')
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
args = parser.parse_args()
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
# register all modules in mmdet into the registries
|
|
# do not init the default scope here because it will be init in the runner
|
|
register_all_modules(init_default_scope=False)
|
|
|
|
# load config
|
|
cfg = Config.fromfile(args.config)
|
|
cfg.launcher = args.launcher
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
# work_dir is determined in this priority: CLI > segment in file > filename
|
|
if args.work_dir is not None:
|
|
# update configs according to CLI args if args.work_dir is not None
|
|
cfg.work_dir = args.work_dir
|
|
elif cfg.get('work_dir', None) is None:
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
cfg.work_dir = osp.join('./work_dirs',
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
# enable automatic-mixed-precision training
|
|
if args.amp:
|
|
optim_wrapper = cfg.optim_wrapper.type
|
|
if optim_wrapper == 'AmpOptimWrapper':
|
|
print_log(
|
|
'AMP training is already enabled in your config.',
|
|
logger='current',
|
|
level=logging.WARNING)
|
|
else:
|
|
assert optim_wrapper == 'OptimWrapper', (
|
|
'`--amp` is only supported when the optimizer wrapper type is '
|
|
f'`OptimWrapper` but got {optim_wrapper}.')
|
|
cfg.optim_wrapper.type = 'AmpOptimWrapper'
|
|
cfg.optim_wrapper.loss_scale = 'dynamic'
|
|
|
|
if args.resume:
|
|
cfg.resume = True
|
|
|
|
# enable automatically scaling LR
|
|
if args.auto_scale_lr:
|
|
if 'auto_scale_lr' in cfg and \
|
|
'base_batch_size' in cfg.auto_scale_lr:
|
|
cfg.auto_scale_lr.enable = True
|
|
else:
|
|
raise RuntimeError('Can not find "auto_scale_lr" or '
|
|
'"auto_scale_lr.base_batch_size" in your'
|
|
' configuration file.')
|
|
|
|
# build the runner from config
|
|
if 'runner_type' not in cfg:
|
|
# build the default runner
|
|
runner = Runner.from_cfg(cfg)
|
|
else:
|
|
# build customized runner from the registry
|
|
# if 'runner_type' is set in the cfg
|
|
runner = RUNNERS.build(cfg)
|
|
|
|
# start training
|
|
runner.train()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|