mirror of
https://github.com/open-mmlab/mmocr.git
synced 2025-06-03 21:54:47 +08:00
* add fcenet * fix linting and code style * fcenet finetune * Update transforms.py * Update fcenet_r50dcnv2_fpn_1500e_ctw1500.py * Update fcenet_targets.py * Update fce_loss.py * fix * add readme * fix config * Update fcenet_r50dcnv2_fpn_1500e_ctw1500.py * fix * fix readme * fix readme * Update test_loss.py Co-authored-by: Hongbin Sun <hongbin306@gmail.com>
73 lines
2.3 KiB
Python
73 lines
2.3 KiB
Python
import numpy as np
|
|
import torch
|
|
|
|
import mmocr.models.textdet.losses as losses
|
|
from mmdet.core import BitmapMasks
|
|
|
|
|
|
def test_panloss():
|
|
panloss = losses.PANLoss()
|
|
|
|
# test bitmasks2tensor
|
|
mask = [[1, 0, 1], [1, 1, 1], [0, 0, 1]]
|
|
target = [[1, 0, 1, 0, 0], [1, 1, 1, 0, 0], [0, 0, 1, 0, 0],
|
|
[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
|
|
masks = [np.array(mask)]
|
|
bitmasks = BitmapMasks(masks, 3, 3)
|
|
target_sz = (6, 5)
|
|
results = panloss.bitmasks2tensor([bitmasks], target_sz)
|
|
assert len(results) == 1
|
|
assert torch.sum(torch.abs(results[0].float() -
|
|
torch.Tensor(target))).item() == 0
|
|
|
|
|
|
def test_textsnakeloss():
|
|
textsnakeloss = losses.TextSnakeLoss()
|
|
|
|
# test balanced_bce_loss
|
|
pred = torch.tensor([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=torch.float)
|
|
target = torch.tensor([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=torch.long)
|
|
mask = torch.tensor([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=torch.long)
|
|
bce_loss = textsnakeloss.balanced_bce_loss(pred, target, mask).item()
|
|
|
|
assert np.allclose(bce_loss, 0)
|
|
|
|
|
|
def test_fcenetloss():
|
|
k = 5
|
|
fcenetloss = losses.FCELoss(fourier_degree=k, sample_num=10)
|
|
|
|
input_shape = (1, 3, 64, 64)
|
|
(n, c, h, w) = input_shape
|
|
|
|
# test ohem
|
|
pred = torch.ones((200, 2), dtype=torch.float)
|
|
target = torch.ones((200, ), dtype=torch.long)
|
|
target[20:] = 0
|
|
mask = torch.ones((200, ), dtype=torch.long)
|
|
|
|
ohem_loss1 = fcenetloss.ohem(pred, target, mask)
|
|
ohem_loss2 = fcenetloss.ohem(pred, target, 1 - mask)
|
|
assert isinstance(ohem_loss1, torch.Tensor)
|
|
assert isinstance(ohem_loss2, torch.Tensor)
|
|
|
|
# test forward
|
|
preds = []
|
|
for i in range(n):
|
|
scale = 8 * 2**i
|
|
pred = []
|
|
pred.append(torch.rand(n, 4, h // scale, w // scale))
|
|
pred.append(torch.rand(n, 4 * k + 2, h // scale, w // scale))
|
|
preds.append(pred)
|
|
|
|
p3_maps = []
|
|
p4_maps = []
|
|
p5_maps = []
|
|
for _ in range(n):
|
|
p3_maps.append(np.random.random((5 + 4 * k, h // 8, w // 8)))
|
|
p4_maps.append(np.random.random((5 + 4 * k, h // 16, w // 16)))
|
|
p5_maps.append(np.random.random((5 + 4 * k, h // 32, w // 32)))
|
|
|
|
loss = fcenetloss(preds, 0, p3_maps, p4_maps, p5_maps)
|
|
assert isinstance(loss, dict)
|