mmocr/tests/test_models/test_detector.py

312 lines
9.5 KiB
Python

"""pytest tests/test_detector.py."""
import copy
from os.path import dirname, exists, join
import numpy as np
import pytest
import torch
import mmocr.core.evaluation.utils as utils
def _demo_mm_inputs(num_kernels=0, input_shape=(1, 3, 300, 300),
num_items=None, num_classes=1): # yapf: disable
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple): Input batch dimensions.
num_items (None | list[int]): Specifies the number of boxes
for each batch item.
num_classes (int): Number of distinct labels a box might have.
"""
from mmdet.core import BitmapMasks
(N, C, H, W) = input_shape
rng = np.random.RandomState(0)
imgs = rng.rand(*input_shape)
img_metas = [{
'img_shape': (H, W, C),
'ori_shape': (H, W, C),
'pad_shape': (H, W, C),
'filename': '<demo>.png',
'scale_factor': np.array([1, 1, 1, 1]),
'flip': False,
} for _ in range(N)]
gt_bboxes = []
gt_labels = []
gt_masks = []
gt_kernels = []
gt_effective_mask = []
for batch_idx in range(N):
if num_items is None:
num_boxes = rng.randint(1, 10)
else:
num_boxes = num_items[batch_idx]
cx, cy, bw, bh = rng.rand(num_boxes, 4).T
tl_x = ((cx * W) - (W * bw / 2)).clip(0, W)
tl_y = ((cy * H) - (H * bh / 2)).clip(0, H)
br_x = ((cx * W) + (W * bw / 2)).clip(0, W)
br_y = ((cy * H) + (H * bh / 2)).clip(0, H)
boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T
class_idxs = [0] * num_boxes
gt_bboxes.append(torch.FloatTensor(boxes))
gt_labels.append(torch.LongTensor(class_idxs))
kernels = []
for kernel_inx in range(num_kernels):
kernel = np.random.rand(H, W)
kernels.append(kernel)
gt_kernels.append(BitmapMasks(kernels, H, W))
gt_effective_mask.append(BitmapMasks([np.ones((H, W))], H, W))
mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8)
gt_masks.append(BitmapMasks(mask, H, W))
mm_inputs = {
'imgs': torch.FloatTensor(imgs).requires_grad_(True),
'img_metas': img_metas,
'gt_bboxes': gt_bboxes,
'gt_labels': gt_labels,
'gt_bboxes_ignore': None,
'gt_masks': gt_masks,
'gt_kernels': gt_kernels,
'gt_mask': gt_effective_mask,
'gt_thr_mask': gt_effective_mask
}
return mm_inputs
def _get_config_directory():
"""Find the predefined detector config directory."""
try:
# Assume we are running in the source mmocr repo
repo_dpath = dirname(dirname(dirname(__file__)))
except NameError:
# For IPython development when this __file__ is not defined
import mmocr
repo_dpath = dirname(dirname(mmocr.__file__))
config_dpath = join(repo_dpath, 'configs')
if not exists(config_dpath):
raise Exception('Cannot find config path')
return config_dpath
def _get_config_module(fname):
"""Load a configuration as a python module."""
from mmcv import Config
config_dpath = _get_config_directory()
config_fpath = join(config_dpath, fname)
config_mod = Config.fromfile(config_fpath)
return config_mod
def _get_detector_cfg(fname):
"""Grab configs necessary to create a detector.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
return model
@pytest.mark.parametrize('cfg_file', [
'textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500.py',
'textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py',
'textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017.py'
])
def test_ocr_mask_rcnn(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
from mmocr.models import build_detector
detector = build_detector(model)
input_shape = (1, 3, 224, 224)
mm_inputs = _demo_mm_inputs(0, input_shape)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
gt_labels = mm_inputs.pop('gt_labels')
gt_masks = mm_inputs.pop('gt_masks')
# Test forward train
gt_bboxes = mm_inputs['gt_bboxes']
losses = detector.forward(
imgs,
img_metas,
gt_bboxes=gt_bboxes,
gt_labels=gt_labels,
gt_masks=gt_masks)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
img_list = [g[None, :] for g in imgs]
batch_results = []
for one_img, one_meta in zip(img_list, img_metas):
result = detector.forward([one_img], [[one_meta]],
return_loss=False)
batch_results.append(result)
# Test get_boundary
results = ([[[1]]], [[
np.array([[1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 0, 0, 0],
[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])
]])
boundaries = detector.get_boundary(results)
assert utils.boundary_iou(boundaries['boundary_result'][0][:-1],
[1, 1, 0, 1, 0, 0, 1, 0]) == 1
# Test show_result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)
@pytest.mark.parametrize('cfg_file', [
'textdet/panet/panet_r18_fpem_ffm_600e_ctw1500.py',
'textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py',
'textdet/panet/panet_r50_fpem_ffm_600e_icdar2017.py'
])
def test_panet(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
model['backbone']['norm_cfg']['type'] = 'BN'
from mmocr.models import build_detector
detector = build_detector(model)
input_shape = (1, 3, 224, 224)
num_kernels = 2
mm_inputs = _demo_mm_inputs(num_kernels, input_shape)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
gt_kernels = mm_inputs.pop('gt_kernels')
gt_mask = mm_inputs.pop('gt_mask')
# Test forward train
losses = detector.forward(
imgs, img_metas, gt_kernels=gt_kernels, gt_mask=gt_mask)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
img_list = [g[None, :] for g in imgs]
batch_results = []
for one_img, one_meta in zip(img_list, img_metas):
result = detector.forward([one_img], [[one_meta]],
return_loss=False)
batch_results.append(result)
# Test show result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)
@pytest.mark.parametrize('cfg_file', [
'textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py',
'textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py',
'textdet/psenet/psenet_r50_fpnf_600e_ctw1500.py'
])
def test_psenet(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
model['backbone']['norm_cfg']['type'] = 'BN'
from mmocr.models import build_detector
detector = build_detector(model)
input_shape = (1, 3, 224, 224)
num_kernels = 7
mm_inputs = _demo_mm_inputs(num_kernels, input_shape)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
gt_kernels = mm_inputs.pop('gt_kernels')
gt_mask = mm_inputs.pop('gt_mask')
# Test forward train
losses = detector.forward(
imgs, img_metas, gt_kernels=gt_kernels, gt_mask=gt_mask)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
img_list = [g[None, :] for g in imgs]
batch_results = []
for one_img, one_meta in zip(img_list, img_metas):
result = detector.forward([one_img], [[one_meta]],
return_loss=False)
batch_results.append(result)
# Test show result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)
@pytest.mark.skip(reason='TODO: re-enable after CI support pytorch>1.4')
@pytest.mark.parametrize('cfg_file', [
'textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py',
'textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py'
])
def test_dbnet(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
model['backbone']['norm_cfg']['type'] = 'BN'
from mmocr.models import build_detector
detector = build_detector(model)
detector = detector.cuda()
input_shape = (1, 3, 224, 224)
num_kernels = 7
mm_inputs = _demo_mm_inputs(num_kernels, input_shape)
imgs = mm_inputs.pop('imgs')
imgs = imgs.cuda()
img_metas = mm_inputs.pop('img_metas')
gt_shrink = mm_inputs.pop('gt_kernels')
gt_shrink_mask = mm_inputs.pop('gt_mask')
gt_thr = mm_inputs.pop('gt_masks')
gt_thr_mask = mm_inputs.pop('gt_thr_mask')
# Test forward train
losses = detector.forward(
imgs,
img_metas,
gt_shrink=gt_shrink,
gt_shrink_mask=gt_shrink_mask,
gt_thr=gt_thr,
gt_thr_mask=gt_thr_mask)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
img_list = [g[None, :] for g in imgs]
batch_results = []
for one_img, one_meta in zip(img_list, img_metas):
result = detector.forward([one_img], [[one_meta]],
return_loss=False)
batch_results.append(result)
# Test show result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)