mirror of https://github.com/open-mmlab/mmocr.git
167 lines
5.0 KiB
Python
167 lines
5.0 KiB
Python
import unittest.mock as mock
|
||
|
||
import numpy as np
|
||
import torchvision.transforms as TF
|
||
from PIL import Image
|
||
|
||
import mmocr.datasets.pipelines.transforms as transforms
|
||
from mmdet.core import BitmapMasks
|
||
|
||
|
||
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
|
||
@mock.patch('%s.transforms.np.random.randint' % __name__)
|
||
def test_random_crop_instances(mock_randint, mock_sample):
|
||
|
||
img_gt = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 1, 1],
|
||
[0, 0, 1, 1, 1], [0, 0, 1, 1, 1]])
|
||
# test target is bigger than img size in sample_offset
|
||
mock_sample.side_effect = [1]
|
||
rci = transforms.RandomCropInstances(6, instance_key='gt_kernels')
|
||
(i, j) = rci.sample_offset(img_gt, (5, 5))
|
||
assert i == 0
|
||
assert j == 0
|
||
|
||
# test the second branch in sample_offset
|
||
|
||
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
|
||
mock_sample.side_effect = [1]
|
||
mock_randint.side_effect = [1, 2]
|
||
(i, j) = rci.sample_offset(img_gt, (5, 5))
|
||
assert i == 1
|
||
assert j == 2
|
||
|
||
mock_sample.side_effect = [1]
|
||
mock_randint.side_effect = [1, 2]
|
||
rci = transforms.RandomCropInstances(5, instance_key='gt_kernels')
|
||
(i, j) = rci.sample_offset(img_gt, (5, 5))
|
||
assert i == 0
|
||
assert j == 0
|
||
|
||
# test the first bracnh is sample_offset
|
||
|
||
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
|
||
mock_sample.side_effect = [0.1]
|
||
mock_randint.side_effect = [1, 1]
|
||
(i, j) = rci.sample_offset(img_gt, (5, 5))
|
||
assert i == 1
|
||
assert j == 1
|
||
|
||
# test crop_img(img, offset, target_size)
|
||
|
||
img = img_gt
|
||
offset = [0, 0]
|
||
target = [6, 6]
|
||
crop = rci.crop_img(img, offset, target)
|
||
assert np.allclose(img, crop[0])
|
||
assert np.allclose(crop[1], [0, 0, 5, 5])
|
||
|
||
target = [3, 2]
|
||
crop = rci.crop_img(img, offset, target)
|
||
assert np.allclose(np.array([[0, 0], [0, 0], [0, 0]]), crop[0])
|
||
assert np.allclose(crop[1], [0, 0, 2, 3])
|
||
|
||
# test __call__
|
||
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
|
||
results = {}
|
||
gt_kernels = [img_gt, img_gt.copy()]
|
||
results['gt_kernels'] = BitmapMasks(gt_kernels, 5, 5)
|
||
results['img'] = img_gt.copy()
|
||
results['mask_fields'] = ['gt_kernels']
|
||
mock_sample.side_effect = [0.1]
|
||
mock_randint.side_effect = [1, 1]
|
||
output = rci(results)
|
||
print(output['img'])
|
||
target = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]])
|
||
assert output['img_shape'] == (3, 3)
|
||
|
||
assert np.allclose(output['img'], target)
|
||
|
||
assert np.allclose(output['gt_kernels'].masks[0], target)
|
||
assert np.allclose(output['gt_kernels'].masks[1], target)
|
||
|
||
|
||
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
|
||
def test_scale_aspect_jitter(mock_random):
|
||
img_scale = [(3000, 1000)] # unused
|
||
ratio_range = (0.5, 1.5)
|
||
aspect_ratio_range = (1, 1)
|
||
multiscale_mode = 'value'
|
||
long_size_bound = 2000
|
||
short_size_bound = 640
|
||
resize_type = 'long_short_bound'
|
||
keep_ratio = False
|
||
jitter = transforms.ScaleAspectJitter(
|
||
img_scale=img_scale,
|
||
ratio_range=ratio_range,
|
||
aspect_ratio_range=aspect_ratio_range,
|
||
multiscale_mode=multiscale_mode,
|
||
long_size_bound=long_size_bound,
|
||
short_size_bound=short_size_bound,
|
||
resize_type=resize_type,
|
||
keep_ratio=keep_ratio)
|
||
mock_random.side_effect = [0.5]
|
||
|
||
# test sample_from_range
|
||
|
||
result = jitter.sample_from_range([100, 200])
|
||
assert result == 150
|
||
|
||
# test _random_scale
|
||
results = {}
|
||
results['img'] = np.zeros((4000, 1000))
|
||
mock_random.side_effect = [0.5, 1]
|
||
jitter._random_scale(results)
|
||
# scale1 0.5, scale2=1 scale =0.5 650/1000, w, h
|
||
# print(results['scale'])
|
||
assert results['scale'] == (650, 2600)
|
||
|
||
|
||
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
|
||
def test_random_rotate(mock_random):
|
||
|
||
mock_random.side_effect = [0.5, 0]
|
||
results = {}
|
||
img = np.random.rand(5, 5)
|
||
results['img'] = img.copy()
|
||
results['mask_fields'] = ['masks']
|
||
gt_kernels = [results['img'].copy()]
|
||
results['masks'] = BitmapMasks(gt_kernels, 5, 5)
|
||
|
||
rotater = transforms.RandomRotateTextDet()
|
||
|
||
results = rotater(results)
|
||
assert np.allclose(results['img'], img)
|
||
assert np.allclose(results['masks'].masks, img)
|
||
|
||
|
||
def test_color_jitter():
|
||
img = np.ones((64, 256, 3), dtype=np.uint8)
|
||
results = {'img': img}
|
||
|
||
pt_official_color_jitter = TF.ColorJitter()
|
||
output1 = pt_official_color_jitter(img)
|
||
|
||
color_jitter = transforms.ColorJitter()
|
||
output2 = color_jitter(results)
|
||
|
||
assert np.allclose(output1, output2['img'])
|
||
|
||
|
||
def test_affine_jitter():
|
||
img = np.ones((64, 256, 3), dtype=np.uint8)
|
||
results = {'img': img}
|
||
|
||
pt_official_affine_jitter = TF.RandomAffine(degrees=0)
|
||
output1 = pt_official_affine_jitter(Image.fromarray(img))
|
||
|
||
affine_jitter = transforms.AffineJitter(
|
||
degrees=0,
|
||
translate=None,
|
||
scale=None,
|
||
shear=None,
|
||
resample=False,
|
||
fillcolor=0)
|
||
output2 = affine_jitter(results)
|
||
|
||
assert np.allclose(np.array(output1), output2['img'])
|