mmocr/old_tests/test_dataset/test_transforms.py
2022-07-21 10:50:58 +08:00

99 lines
3.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) OpenMMLab. All rights reserved.
import unittest.mock as mock
import numpy as np
from mmdet.core import PolygonMasks
import mmocr.datasets.pipelines.transforms as transforms
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_scale_aspect_jitter(mock_random):
img_scale = [(3000, 1000)] # unused
ratio_range = (0.5, 1.5)
aspect_ratio_range = (1, 1)
multiscale_mode = 'value'
long_size_bound = 2000
short_size_bound = 640
resize_type = 'long_short_bound'
keep_ratio = False
jitter = transforms.ScaleAspectJitter(
img_scale=img_scale,
ratio_range=ratio_range,
aspect_ratio_range=aspect_ratio_range,
multiscale_mode=multiscale_mode,
long_size_bound=long_size_bound,
short_size_bound=short_size_bound,
resize_type=resize_type,
keep_ratio=keep_ratio)
mock_random.side_effect = [0.5]
# test sample_from_range
result = jitter.sample_from_range([100, 200])
assert result == 150
# test _random_scale
results = {}
results['img'] = np.zeros((4000, 1000))
mock_random.side_effect = [0.5, 1]
jitter._random_scale(results)
# scale1 0.5 scale2=1 scale =0.5 650/1000, w, h
# print(results['scale'])
assert results['scale'] == (650, 2600)
def test_random_scale():
h, w, c = 100, 100, 3
img = np.ones((h, w, c), dtype=np.uint8)
results = {'img': img, 'img_shape': (h, w, c)}
polygon = np.array([0., 0., 0., 10., 10., 10., 10., 0.])
results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2]))
results['mask_fields'] = ['gt_masks']
size = 100
scale = (2., 2.)
random_scaler = transforms.RandomScaling(size=size, scale=scale)
results = random_scaler(results)
out_img = results['img']
out_poly = results['gt_masks'].masks[0][0]
gt_poly = polygon * 2
assert np.allclose(out_img.shape, (2 * h, 2 * w, c))
assert np.allclose(out_poly, gt_poly)
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_square_resize_pad(mock_sample):
results = {}
img = np.zeros((15, 30, 3))
polygon = np.array([10., 5., 20., 5., 20., 10., 10., 10.])
poly_masks = PolygonMasks([[polygon]], 15, 30)
results['img'] = img
results['gt_masks'] = poly_masks
results['mask_fields'] = ['gt_masks']
srp = transforms.SquareResizePad(target_size=40, pad_ratio=0.5)
# test resize with padding
mock_sample.side_effect = [0.]
output = srp(results)
target = 4. / 3 * polygon
target[1::2] += 10.
assert np.allclose(output['gt_masks'].masks[0][0], target)
assert output['img'].shape == (40, 40, 3)
# test resize to square without padding
results['img'] = img
results['gt_masks'] = poly_masks
mock_sample.side_effect = [1.]
output = srp(results)
target = polygon.copy()
target[::2] *= 4. / 3
target[1::2] *= 8. / 3
assert np.allclose(output['gt_masks'].masks[0][0], target)
assert output['img'].shape == (40, 40, 3)