mmocr/configs/textdet/maskrcnn/README.md

48 lines
4.4 KiB
Markdown

# Mask R-CNN
## Introduction
[ALGORITHM]
```bibtex
@INPROCEEDINGS{8237584,
author={K. {He} and G. {Gkioxari} and P. {Dollár} and R. {Girshick}},
booktitle={2017 IEEE International Conference on Computer Vision (ICCV)},
title={Mask R-CNN},
year={2017},
pages={2980-2988},
doi={10.1109/ICCV.2017.322}}
```
In tuning parameters, we refer to the baseline method in the following article:
```bibtex
@article{pmtd,
author={Jingchao Liu and Xuebo Liu and Jie Sheng and Ding Liang and Xin Li and Qingjie Liu},
title={Pyramid Mask Text Detector},
journal={CoRR},
volume={abs/1903.11800},
year={2019}
}
```
## Results and models
### CTW1500
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
| :---------------------------------------------------------------------: | :--------------: | :-----------: | :----------: | :-----: | :-------: | :----: | :-------: | :---: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [MaskRCNN](/configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500.py) | ImageNet | CTW1500 Train | CTW1500 Test | 160 | 1600 | 0.753 | 0.712 | 0.732 | [model](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500_20210219-96497a76.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500_20210219-96497a76.log.json) |
### ICDAR2015
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
| :-----------------------------------------------------------------------: | :--------------: | :-------------: | :------------: | :-----: | :-------: | :----: | :-------: | :---: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [MaskRCNN](/configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py) | ImageNet | ICDAR2015 Train | ICDAR2015 Test | 160 | 1920 | 0.783 | 0.872 | 0.825 | [model](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015_20210219-8eb340a3.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015_20210219-8eb340a3.log.json) |
### ICDAR2017
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
| :-----------------------------------------------------------------------: | :--------------: | :-------------: | :-----------: | :-----: | :-------: | :----: | :-------: | :---: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [MaskRCNN](/configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017.py) | ImageNet | ICDAR2017 Train | ICDAR2017 Val | 160 | 1600 | 0.754 | 0.827 | 0.789 | [model](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017_20210218-c6ec3ebb.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017_20210218-c6ec3ebb.log.json) |