mmocr/docs/en/user_guides/dataset_prepare.md

204 lines
7.2 KiB
Markdown

# Dataset Preparation
## Introduction
After decades of development, the OCR community has produced a series of related datasets that often provide annotations of text in a variety of styles, making it necessary for users to convert these datasets to the required format when using them. MMOCR supports dozens of commonly used text-related datasets and provides a [data preparation script](./data_prepare/dataset_preparer.md) to help users prepare the datasets with only one command.
In the following, we provide a brief overview of the data formats defined in MMOCR for each task.
- As shown in the following code block, the text detection task uses the data format `TextDetDataset`, which holds the bounding box annotations, file names, and other information required for the text detection task. We provide a sample annotation file in the `tests/data/det_toy_dataset/instances_test.json` path.
```json
{
"metainfo":
{
"dataset_type": "TextDetDataset",
"task_name": "textdet",
"category": [{"id": 0, "name": "text"}]
},
"data_list":
[
{
"img_path": "test_img.jpg",
"height": 640,
"width": 640,
"instances":
[
{
"polygon": [0, 0, 0, 10, 10, 20, 20, 0],
"bbox": [0, 0, 10, 20],
"bbox_label": 0,
"ignore": false,
},
],
//...
}
]
}
```
- As shown in the following code block, the text recognition task uses the data format `TextRecogDataset`, which holds information such as text instances and image paths required by the text recognition task. An example annotation file is provided in the `tests/data/rec_toy_dataset/labels.json` path.
```json
{
"metainfo":
{
"dataset_type": "TextRecogDataset",
"task_name": "textrecog",
},
"data_list":
[
{
"img_path": "test_img.jpg",
"instances":
[
{
"text": "GRAND"
}
]
}
]
}
```
## Downloading Datasets and Format Conversion
As an example of the data preparation steps, you can use the following command to prepare the ICDAR 2015 dataset for text detection task.
```shell
python tools/dataset_converters/prepare_dataset.py icdar2015 --task textdet
```
Then, the dataset has been downloaded and converted to MMOCR format, and the file directory structure is as follows:
```text
data/icdar2015
├── textdet_imgs
│ ├── test
│ └── train
├── textdet_test.json
└── textdet_train.json
```
Once your dataset has been prepared, you can use the [browse_dataset.py](./useful_tools.md#dataset-visualization-tool) to visualize the dataset and check if the annotations are correct.
```bash
python tools/analysis_tools/browse_dataset.py configs/textdet/_base_/datasets/icdar2015.py
```
## Dataset Configuration
### Single Dataset Training
When training or evaluating a model on new datasets, we need to write the dataset config where the image path, annotation path, and image prefix are set. The path `configs/xxx/_base_/datasets/` is pre-configured with the commonly used datasets in MMOCR (if you use `prepare_dataset.py` to prepare dataset, this config will be generated automatically), here we take the ICDAR 2015 dataset as an example (see `configs/textdet/_base_/datasets/icdar2015.py`).
```Python
icdar2015_textdet_data_root = 'data/icdar2015' # dataset root path
# Train set config
icdar2015_textdet_train = dict(
type='OCRDataset',
data_root=icdar2015_textdet_data_root, # dataset root path
ann_file='textdet_train.json', # name of annotation
filter_cfg=dict(filter_empty_gt=True, min_size=32), # filtering empty images
pipeline=None)
# Test set config
icdar2015_textdet_test = dict(
type='OCRDataset',
data_root=icdar2015_textdet_data_root,
ann_file='textdet_test.json',
test_mode=True,
pipeline=None)
```
After configuring the dataset, we can import it in the corresponding model configs. For example, to train the "DBNet_R18" model on the ICDAR 2015 dataset.
```Python
_base_ = [
'_base_dbnet_r18_fpnc.py',
'../_base_/datasets/icdar2015.py', # import the dataset config
'../_base_/default_runtime.py',
'../_base_/schedules/schedule_sgd_1200e.py',
]
icdar2015_textdet_train = _base_.icdar2015_textdet_train # specify the training set
icdar2015_textdet_train.pipeline = _base_.train_pipeline # specify the training pipeline
icdar2015_textdet_test = _base_.icdar2015_textdet_test # specify the testing set
icdar2015_textdet_test.pipeline = _base_.test_pipeline # specify the testing pipeline
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=icdar2015_textdet_train) # specify the dataset in train_dataloader
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=icdar2015_textdet_test) # specify the dataset in val_dataloader
test_dataloader = val_dataloader
```
### Multi-dataset Training
In addition, [`ConcatDataset`](mmocr.datasets.ConcatDataset) enables users to train or test the model on a combination of multiple datasets. You just need to set the dataset type in the dataloader to `ConcatDataset` in the configuration file and specify the corresponding list of datasets.
```Python
train_list = [ic11, ic13, ic15]
train_dataloader = dict(
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
```
For example, the following configuration uses the MJSynth dataset for training and 6 academic datasets (CUTE80, IIIT5K, SVT, SVTP, ICDAR2013, ICDAR2015) for testing.
```Python
_base_ = [ # Import all dataset configurations you want to use
'../_base_/datasets/mjsynth.py',
'../_base_/datasets/cute80.py',
'../_base_/datasets/iiit5k.py',
'../_base_/datasets/svt.py',
'../_base_/datasets/svtp.py',
'../_base_/datasets/icdar2013.py',
'../_base_/datasets/icdar2015.py',
'../_base_/default_runtime.py',
'../_base_/schedules/schedule_adadelta_5e.py',
'_base_crnn_mini-vgg.py',
]
# List of training datasets
train_list = [_base_.mjsynth_textrecog_test]
# List of testing datasets
test_list = [
_base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test, _base_.svt_textrecog_test,
_base_.svtp_textrecog_test, _base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test
]
# Use ConcatDataset to combine the datasets in the list
train_dataset = dict(
type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)
test_dataset = dict(
type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)
train_dataloader = dict(
batch_size=192 * 4,
num_workers=32,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
test_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
val_dataloader = test_dataloader
```