7.7 KiB
Useful Tools
Analysis Tools
Dataset Visualization Tool
MMOCR provides a dataset visualization tool tools/analysis_tools/browse_datasets.py
to help users troubleshoot possible dataset-related problems. You just need to specify the path to the training config and the tool will automatically plots the images transformed by corresponding data pipelines with the GT labels. The following example demonstrates how to use the tool to visualize the training data used by the "DBNet_R50_icdar2015" model.
# Example: Visualizing the training data used by dbnet_r50dcn_v2_fpnc_1200e_icadr2015
python tools/analysis_tools/browse_dataset.py configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py
The visualization results will be like:



Based on this tool, users can easily verify if the annotation of a custom dataset is correct. Also, you can verify if the data augmentation strategies are running as you expected by modifying train_pipeline
in the configuration file. The optional parameters of browse_dataset.py
are as follows.
ARGS | Type | Description |
---|---|---|
config | str | (required) Path to the config. |
--output-dir | str | If GUI is not available, specifying an output path to save the visualization results. |
--show-interval | float | Interval of visualization (s), defaults to 2. |
Offline Evaluation Tool
For saved prediction results, we provide an offline evaluation script tools/analysis_tools/offline_eval.py
. The following example demonstrates how to use this tool to evaluate the output of the "PSENet" model offline.
# When running the test script for the first time, you can save the output of the model by specifying the --save-preds parameter
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --save-preds
# Example: Testing on PSENet
python tools/test.py configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py epoch_600.pth --save-preds
# Then, using the saved outputs for offline evaluation
python tools/analysis_tool/offline_eval.py ${CONFIG_FILE} ${PRED_FILE}
# Example: Offline evaluation of saved PSENet results
python tools/analysis_tools/offline_eval.py configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py work_dirs/psenet_r50_fpnf_600e_icdar2015/epoch_600.pth_predictions.pkl
-save-preds
saves the output to work_dir/CONFIG_NAME/MODEL_NAME_predictions.pkl
by default
In addition, based on this tool, users can also convert predictions obtained from other libraries into MMOCR-supported formats, then use MMOCR's built-in metrics to evaluate them.
ARGS | Type | Description |
---|---|---|
config | str | (required) Path to the config. |
pkl_results | str | (required) The saved predictions. |
--cfg-options | float | Override configs. Example |
Calculate FLOPs and the Number of Parameters
We provide a method to calculate the FLOPs and the number of parameters, first we install the dependencies using the following command.
pip install fvcore
The usage of the script to calculate FLOPs and the number of parameters is as follows.
python tools/analysis_tools/get_flops.py ${config} --shape ${IMAGE_SHAPE}
ARGS | Type | Description |
---|---|---|
config | str | (required) Path to the config. |
--shape | int | Image size to use when calculating FLOPs, such as --shape 320 320 . Default is 640 640 |
For example, you can run the following command to get FLOPs and the number of parameters of dbnet_resnet18_fpnc_100k_synthtext.py
:
python tools/analysis_tools/get_flops.py configs/textdet/dbnet/dbnet_resnet18_fpnc_100k_synthtext.py --shape 1024 1024
The output is as follows:
input shape is (1, 3, 1024, 1024)
| module | #parameters or shape | #flops |
| :------------------------ | :------------------- | :------ |
| model | 12.341M | 63.955G |
| backbone | 11.177M | 38.159G |
| backbone.conv1 | 9.408K | 2.466G |
| backbone.conv1.weight | (64, 3, 7, 7) | |
| backbone.bn1 | 0.128K | 83.886M |
| backbone.bn1.weight | (64,) | |
| backbone.bn1.bias | (64,) | |
| backbone.layer1 | 0.148M | 9.748G |
| backbone.layer1.0 | 73.984K | 4.874G |
| backbone.layer1.1 | 73.984K | 4.874G |
| backbone.layer2 | 0.526M | 8.642G |
| backbone.layer2.0 | 0.23M | 3.79G |
| backbone.layer2.1 | 0.295M | 4.853G |
| backbone.layer3 | 2.1M | 8.616G |
| backbone.layer3.0 | 0.919M | 3.774G |
| backbone.layer3.1 | 1.181M | 4.842G |
| backbone.layer4 | 8.394M | 8.603G |
| backbone.layer4.0 | 3.673M | 3.766G |
| backbone.layer4.1 | 4.721M | 4.837G |
| neck | 0.836M | 14.887G |
| neck.lateral_convs | 0.246M | 2.013G |
| neck.lateral_convs.0.conv | 16.384K | 1.074G |
| neck.lateral_convs.1.conv | 32.768K | 0.537G |
| neck.lateral_convs.2.conv | 65.536K | 0.268G |
| neck.lateral_convs.3.conv | 0.131M | 0.134G |
| neck.smooth_convs | 0.59M | 12.835G |
| neck.smooth_convs.0.conv | 0.147M | 9.664G |
| neck.smooth_convs.1.conv | 0.147M | 2.416G |
| neck.smooth_convs.2.conv | 0.147M | 0.604G |
| neck.smooth_convs.3.conv | 0.147M | 0.151G |
| det_head | 0.329M | 10.909G |
| det_head.binarize | 0.164M | 10.909G |
| det_head.binarize.0 | 0.147M | 9.664G |
| det_head.binarize.1 | 0.128K | 20.972M |
| det_head.binarize.3 | 16.448K | 1.074G |
| det_head.binarize.4 | 0.128K | 83.886M |
| det_head.binarize.6 | 0.257K | 67.109M |
| det_head.threshold | 0.164M | |
| det_head.threshold.0 | 0.147M | |
| det_head.threshold.1 | 0.128K | |
| det_head.threshold.3 | 16.448K | |
| det_head.threshold.4 | 0.128K | |
| det_head.threshold.6 | 0.257K | |
!!!Please be cautious if you use the results in papers. You may need to check if all ops are supported and verify that the flops computation is correct.