mmpretrain/tools/train.py

98 lines
3.0 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
2020-05-21 21:21:43 +08:00
import argparse
import os
import os.path as osp
from mmengine.config import Config, DictAction
from mmengine.runner import Runner
2020-05-21 21:21:43 +08:00
from mmcls.utils import register_all_modules
2020-05-21 21:21:43 +08:00
def parse_args():
parser = argparse.ArgumentParser(description='Train a classifier')
2020-05-21 21:21:43 +08:00
parser.add_argument('config', help='train config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--resume-from', help='the checkpoint file to resume from')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
2020-05-21 21:21:43 +08:00
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
2022-05-17 21:10:25 +08:00
parser.add_argument('--local_rank', type=int, default=0)
2020-05-21 21:21:43 +08:00
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def merge_args(cfg, args):
"""Merge CLI arguments to config."""
if args.resume_from is not None:
cfg.resume = True
cfg.load_from = args.resume_from
2022-06-09 21:48:12 +08:00
if args.no_validate:
cfg.val_cfg = None
cfg.val_dataloader = None
cfg.val_evaluator = None
2022-06-09 21:48:12 +08:00
cfg.launcher = args.launcher
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
return cfg
2020-05-21 21:21:43 +08:00
def main():
args = parse_args()
# register all modules in mmcls into the registries
# do not init the default scope here because it will be init in the runner
register_all_modules(init_default_scope=False)
# load config
2020-05-21 21:21:43 +08:00
cfg = Config.fromfile(args.config)
2022-06-09 21:48:12 +08:00
# merge cli arguments to config
cfg = merge_args(cfg, args)
2022-06-09 21:48:12 +08:00
# set preprocess configs to model
cfg.model.setdefault('data_preprocessor', cfg.get('preprocess_cfg', {}))
# build the runner from config
runner = Runner.from_cfg(cfg)
# start training
runner.train()
2020-05-21 21:21:43 +08:00
if __name__ == '__main__':
main()