2022-03-30 20:40:25 +08:00
|
|
|
_base_ = [
|
|
|
|
'../_base_/models/repmlp-base_224.py',
|
|
|
|
'../_base_/datasets/imagenet_bs64_pil_resize.py',
|
|
|
|
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
|
|
|
|
'../_base_/default_runtime.py'
|
|
|
|
]
|
|
|
|
|
2022-06-01 14:11:53 +08:00
|
|
|
# dataset settings
|
2022-03-30 20:40:25 +08:00
|
|
|
test_pipeline = [
|
|
|
|
dict(type='LoadImageFromFile'),
|
2022-06-01 14:11:53 +08:00
|
|
|
# resizing to (256, 256) here, different from resizing shorter edge to 256
|
2022-05-19 00:48:59 +08:00
|
|
|
dict(type='Resize', scale=(256, 256), backend='pillow'),
|
2022-03-30 20:40:25 +08:00
|
|
|
dict(type='CenterCrop', crop_size=224),
|
2023-03-03 15:01:11 +08:00
|
|
|
dict(type='PackInputs'),
|
2022-03-30 20:40:25 +08:00
|
|
|
]
|
2022-06-01 14:11:53 +08:00
|
|
|
|
|
|
|
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
|
|
|
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
|
|
|
|
2022-06-02 17:11:09 +08:00
|
|
|
# schedule settings
|
|
|
|
optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
|
2022-07-14 19:15:49 +08:00
|
|
|
|
2022-07-15 15:20:17 +08:00
|
|
|
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
|
|
|
# based on the actual training batch size.
|
2022-07-14 19:15:49 +08:00
|
|
|
# base_batch_size = (8 GPUs) x (64 samples per GPU)
|
|
|
|
auto_scale_lr = dict(base_batch_size=512)
|