mmpretrain/configs/repmlp/repmlp-base_8xb64_in1k.py

27 lines
879 B
Python
Raw Normal View History

_base_ = [
'../_base_/models/repmlp-base_224.py',
'../_base_/datasets/imagenet_bs64_pil_resize.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
# dataset settings
test_pipeline = [
dict(type='LoadImageFromFile'),
# resizing to (256, 256) here, different from resizing shorter edge to 256
dict(type='Resize', scale=(256, 256), backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
# schedule settings
optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
2022-07-14 19:15:49 +08:00
2022-07-15 15:20:17 +08:00
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
2022-07-14 19:15:49 +08:00
# base_batch_size = (8 GPUs) x (64 samples per GPU)
auto_scale_lr = dict(base_batch_size=512)