2023-02-23 11:17:16 +08:00
|
|
|
_base_ = [
|
|
|
|
'../_base_/datasets/imagenet_bs256_simmim_192.py',
|
|
|
|
'../_base_/default_runtime.py',
|
|
|
|
]
|
|
|
|
|
|
|
|
# model settings
|
|
|
|
model = dict(
|
|
|
|
type='SimMIM',
|
|
|
|
backbone=dict(
|
|
|
|
type='SimMIMSwinTransformer',
|
|
|
|
arch='large',
|
|
|
|
img_size=192,
|
|
|
|
stage_cfgs=dict(block_cfgs=dict(window_size=12)),
|
|
|
|
pad_small_map=True),
|
2023-02-28 10:05:00 +08:00
|
|
|
neck=dict(
|
|
|
|
type='SimMIMLinearDecoder', in_channels=192 * 2**3, encoder_stride=32),
|
2023-02-23 11:17:16 +08:00
|
|
|
head=dict(
|
|
|
|
type='SimMIMHead',
|
|
|
|
patch_size=4,
|
2023-03-06 16:53:15 +08:00
|
|
|
loss=dict(type='PixelReconstructionLoss', criterion='L1', channel=3)))
|
2023-02-23 11:17:16 +08:00
|
|
|
|
|
|
|
# optimizer wrapper
|
|
|
|
optim_wrapper = dict(
|
|
|
|
type='AmpOptimWrapper',
|
|
|
|
optimizer=dict(
|
2023-03-07 08:51:31 +08:00
|
|
|
type='AdamW',
|
|
|
|
lr=1e-4 * 2048 / 512,
|
|
|
|
betas=(0.9, 0.999),
|
|
|
|
weight_decay=0.05),
|
2023-02-23 11:17:16 +08:00
|
|
|
clip_grad=dict(max_norm=5.0),
|
|
|
|
paramwise_cfg=dict(
|
|
|
|
custom_keys={
|
|
|
|
'norm': dict(decay_mult=0.0),
|
|
|
|
'bias': dict(decay_mult=0.0),
|
|
|
|
'absolute_pos_embed': dict(decay_mult=0.),
|
|
|
|
'relative_position_bias_table': dict(decay_mult=0.)
|
|
|
|
}))
|
|
|
|
|
|
|
|
# learning rate scheduler
|
|
|
|
param_scheduler = [
|
|
|
|
dict(
|
|
|
|
type='LinearLR',
|
|
|
|
start_factor=5e-7 / 1e-4,
|
|
|
|
by_epoch=True,
|
|
|
|
begin=0,
|
|
|
|
end=10,
|
|
|
|
convert_to_iter_based=True),
|
|
|
|
dict(
|
|
|
|
type='MultiStepLR',
|
|
|
|
milestones=[700],
|
|
|
|
by_epoch=True,
|
|
|
|
begin=10,
|
|
|
|
end=800,
|
|
|
|
convert_to_iter_based=True)
|
|
|
|
]
|
|
|
|
|
|
|
|
# runtime
|
|
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=800)
|
|
|
|
default_hooks = dict(
|
|
|
|
# only keeps the latest 3 checkpoints
|
|
|
|
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
|
|
|
|
|
|
|
|
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
|
|
|
# based on the actual training batch size.
|
|
|
|
auto_scale_lr = dict(base_batch_size=2048)
|