2021-04-29 15:18:55 +08:00
|
|
|
# optimizer
|
2022-06-02 17:11:09 +08:00
|
|
|
optim_wrapper = dict(
|
|
|
|
optimizer=dict(type='AdamW', lr=0.003, weight_decay=0.3),
|
|
|
|
# specific to vit pretrain
|
|
|
|
paramwise_cfg=dict(custom_keys={
|
|
|
|
'.cls_token': dict(decay_mult=0.0),
|
|
|
|
'.pos_embed': dict(decay_mult=0.0)
|
|
|
|
}),
|
2021-12-15 22:44:57 +08:00
|
|
|
)
|
2021-04-29 15:18:55 +08:00
|
|
|
|
|
|
|
# learning policy
|
2022-05-23 17:31:57 +08:00
|
|
|
param_scheduler = [
|
2022-06-02 17:11:09 +08:00
|
|
|
# warm up learning rate scheduler
|
2022-05-23 17:31:57 +08:00
|
|
|
dict(
|
|
|
|
type='LinearLR',
|
|
|
|
start_factor=1e-4,
|
2022-06-01 14:11:53 +08:00
|
|
|
by_epoch=True,
|
2022-05-23 17:31:57 +08:00
|
|
|
begin=0,
|
2022-06-01 14:11:53 +08:00
|
|
|
end=30,
|
|
|
|
# update by iter
|
|
|
|
convert_to_iter_based=True),
|
|
|
|
# main learning rate scheduler
|
2022-05-23 17:31:57 +08:00
|
|
|
dict(
|
2022-06-01 14:11:53 +08:00
|
|
|
type='CosineAnnealingLR',
|
|
|
|
T_max=270,
|
|
|
|
by_epoch=True,
|
|
|
|
begin=30,
|
|
|
|
end=300,
|
|
|
|
)
|
2022-05-23 17:31:57 +08:00
|
|
|
]
|
|
|
|
|
|
|
|
# train, val, test setting
|
2022-07-12 16:10:59 +08:00
|
|
|
train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1)
|
|
|
|
val_cfg = dict()
|
2022-05-23 17:31:57 +08:00
|
|
|
test_cfg = dict()
|