mmpretrain/configs/_base_/datasets/cifar100_bs16.py

37 lines
1.0 KiB
Python
Raw Normal View History

# dataset settings
dataset_type = 'CIFAR100'
img_norm_cfg = dict(
mean=[129.304, 124.070, 112.434],
std=[68.170, 65.392, 70.418],
to_rgb=True)
train_pipeline = [
dict(type='RandomCrop', size=32, padding=4),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=16,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_prefix='data/cifar100',
pipeline=train_pipeline),
val=dict(
2021-05-27 15:20:25 +08:00
type=dataset_type,
data_prefix='data/cifar100',
pipeline=test_pipeline,
test_mode=True),
test=dict(
2021-05-27 15:20:25 +08:00
type=dataset_type,
data_prefix='data/cifar100',
pipeline=test_pipeline,
test_mode=True))