2021-04-28 17:07:26 +08:00
|
|
|
Collections:
|
|
|
|
- Name: ResNeXt
|
|
|
|
Metadata:
|
2021-07-01 20:50:42 +08:00
|
|
|
Training Data: ImageNet-1k
|
2021-04-28 17:07:26 +08:00
|
|
|
Training Techniques:
|
|
|
|
- SGD with Momentum
|
|
|
|
- Weight Decay
|
|
|
|
Training Resources: 8x V100 GPUs
|
|
|
|
Epochs: 100
|
|
|
|
Batch Size: 256
|
|
|
|
Architecture:
|
|
|
|
- ResNeXt
|
2021-09-18 16:32:46 +08:00
|
|
|
Paper:
|
|
|
|
URL: https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html
|
|
|
|
Title: "Aggregated Residual Transformations for Deep Neural Networks"
|
2021-04-28 17:07:26 +08:00
|
|
|
README: configs/resnext/README.md
|
2021-09-18 16:32:46 +08:00
|
|
|
Code:
|
2023-04-06 20:58:52 +08:00
|
|
|
URL: https://github.com/open-mmlab/mmpretrain/blob/v0.15.0/mmcls/models/backbones/resnext.py#L90
|
2021-09-18 16:32:46 +08:00
|
|
|
Version: v0.15.0
|
2021-04-28 17:07:26 +08:00
|
|
|
|
|
|
|
Models:
|
2021-11-19 14:20:35 +08:00
|
|
|
- Name: resnext50-32x4d_8xb32_in1k
|
2021-07-01 20:50:42 +08:00
|
|
|
Metadata:
|
|
|
|
FLOPs: 4270000000
|
|
|
|
Parameters: 25030000
|
|
|
|
In Collection: ResNeXt
|
|
|
|
Results:
|
|
|
|
- Dataset: ImageNet-1k
|
|
|
|
Metrics:
|
2021-09-18 16:32:46 +08:00
|
|
|
Top 1 Accuracy: 77.90
|
|
|
|
Top 5 Accuracy: 93.66
|
2021-07-01 20:50:42 +08:00
|
|
|
Task: Image Classification
|
2021-09-18 16:32:46 +08:00
|
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.pth
|
2021-11-19 14:20:35 +08:00
|
|
|
Config: configs/resnext/resnext50-32x4d_8xb32_in1k.py
|
|
|
|
- Name: resnext101-32x4d_8xb32_in1k
|
2021-07-01 20:50:42 +08:00
|
|
|
Metadata:
|
|
|
|
FLOPs: 8030000000
|
|
|
|
Parameters: 44180000
|
|
|
|
In Collection: ResNeXt
|
|
|
|
Results:
|
|
|
|
- Dataset: ImageNet-1k
|
|
|
|
Metrics:
|
2021-09-18 16:32:46 +08:00
|
|
|
Top 1 Accuracy: 78.61
|
|
|
|
Top 5 Accuracy: 94.17
|
2021-07-01 20:50:42 +08:00
|
|
|
Task: Image Classification
|
2021-09-18 16:32:46 +08:00
|
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.pth
|
2021-11-19 14:20:35 +08:00
|
|
|
Config: configs/resnext/resnext101-32x4d_8xb32_in1k.py
|
|
|
|
- Name: resnext101-32x8d_8xb32_in1k
|
2021-07-01 20:50:42 +08:00
|
|
|
Metadata:
|
|
|
|
FLOPs: 16500000000
|
|
|
|
Parameters: 88790000
|
|
|
|
In Collection: ResNeXt
|
|
|
|
Results:
|
|
|
|
- Dataset: ImageNet-1k
|
|
|
|
Metrics:
|
2021-09-18 16:32:46 +08:00
|
|
|
Top 1 Accuracy: 79.27
|
|
|
|
Top 5 Accuracy: 94.58
|
2021-07-01 20:50:42 +08:00
|
|
|
Task: Image Classification
|
2021-09-18 16:32:46 +08:00
|
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.pth
|
2021-11-19 14:20:35 +08:00
|
|
|
Config: configs/resnext/resnext101-32x8d_8xb32_in1k.py
|
|
|
|
- Name: resnext152-32x4d_8xb32_in1k
|
2021-07-01 20:50:42 +08:00
|
|
|
Metadata:
|
|
|
|
FLOPs: 11800000000
|
|
|
|
Parameters: 59950000
|
|
|
|
In Collection: ResNeXt
|
|
|
|
Results:
|
|
|
|
- Dataset: ImageNet-1k
|
|
|
|
Metrics:
|
2021-09-18 16:32:46 +08:00
|
|
|
Top 1 Accuracy: 78.88
|
|
|
|
Top 5 Accuracy: 94.33
|
2021-07-01 20:50:42 +08:00
|
|
|
Task: Image Classification
|
2021-09-18 16:32:46 +08:00
|
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.pth
|
2021-11-19 14:20:35 +08:00
|
|
|
Config: configs/resnext/resnext152-32x4d_8xb32_in1k.py
|