2022-08-26 18:03:18 +08:00
# Prerequisites
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
In this section we demonstrate how to prepare an environment with PyTorch.
2020-07-07 22:44:38 +08:00
2023-01-11 15:20:51 +08:00
MMClassification works on Linux, Windows and macOS. It requires Python 3.7+, CUDA 9.2+ and PyTorch 1.6+.
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
```{note}
If you are experienced with PyTorch and have already installed it, just skip this part and jump to the [next section ](#installation ). Otherwise, you can follow these steps for the preparation.
2020-07-07 22:44:38 +08:00
```
2022-08-26 18:03:18 +08:00
**Step 1.** Download and install Miniconda from the [official website ](https://docs.conda.io/en/latest/miniconda.html ).
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
**Step 2.** Create a conda environment and activate it.
2020-09-30 19:00:20 +08:00
```shell
2022-08-26 18:03:18 +08:00
conda create --name openmmlab python=3.8 -y
conda activate openmmlab
2020-09-30 19:00:20 +08:00
```
2022-08-26 18:03:18 +08:00
**Step 3.** Install PyTorch following [official instructions ](https://pytorch.org/get-started/locally/ ), e.g.
2020-09-30 19:00:20 +08:00
2022-08-26 18:03:18 +08:00
On GPU platforms:
2020-09-30 19:00:20 +08:00
```shell
2022-08-26 18:03:18 +08:00
conda install pytorch torchvision -c pytorch
```
2020-09-30 19:00:20 +08:00
2022-08-26 18:03:18 +08:00
```{warning}
This command will automatically install the latest version PyTorch and cudatoolkit, please check whether they match your environment.
```
2022-01-30 20:49:54 +08:00
2022-08-26 18:03:18 +08:00
On CPU platforms:
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
```shell
conda install pytorch torchvision cpuonly -c pytorch
2020-07-07 22:44:38 +08:00
```
2022-08-26 18:03:18 +08:00
# Installation
2020-12-02 19:42:45 +08:00
2022-08-26 18:03:18 +08:00
## Best Practices
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
According to your needs, we support two install modes:
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
- [Install from source (Recommended) ](#install-from-source ): You want to develop your own image classification task or new features based on MMClassification framework. For example, adding new dataset or new models. And you can use all tools we provided.
- [Install as a Python package ](#install-as-a-python-package ): You just want to call MMClassification's APIs or import MMClassification's modules in your project.
2020-12-02 19:42:45 +08:00
2022-08-26 18:03:18 +08:00
### Install from source
2020-07-07 22:44:38 +08:00
2023-03-02 13:29:07 +08:00
In this case, install mmpretrain from source:
2020-07-07 22:44:38 +08:00
```shell
2022-12-06 17:00:32 +08:00
git clone -b 1.x https://github.com/open-mmlab/mmclassification.git
2022-08-26 18:03:18 +08:00
cd mmclassification
2022-12-06 17:00:32 +08:00
pip install -U openmim & & mim install -e .
2020-07-07 22:44:38 +08:00
```
2022-12-06 17:00:32 +08:00
```{note}
`"-e"` means installing a project in editable mode, thus any local modifications made to the code will take effect without reinstallation.
2022-01-30 20:49:54 +08:00
```
2022-08-26 18:03:18 +08:00
### Install as a Python package
2022-01-30 20:49:54 +08:00
2022-12-06 17:00:32 +08:00
Just install with mim.
2020-07-07 22:44:38 +08:00
```shell
2023-03-02 13:29:07 +08:00
pip install -U openmim & & mim install "mmpretrain>=1.0.0rc0"
2022-12-06 17:00:32 +08:00
```
```{note}
`mim` is a light-weight command-line tool to setup appropriate environment for OpenMMLab repositories according to PyTorch and CUDA version. It also has some useful functions for deep-learning experiments.
2020-07-07 22:44:38 +08:00
```
2022-08-26 18:03:18 +08:00
## Verify the installation
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
To verify whether MMClassification is installed correctly, we provide some sample codes to run an inference demo.
2020-07-07 22:44:38 +08:00
2023-03-02 13:29:07 +08:00
Option (a). If you install mmpretrain from the source, just run the following command:
2022-03-23 12:03:03 +08:00
```shell
2023-02-08 14:30:12 +08:00
python demo/image_demo.py demo/demo.JPEG resnet18_8xb32_in1k --device cpu
2022-03-23 12:03:03 +08:00
```
2022-08-26 18:03:18 +08:00
You will see the output result dict including `pred_label` , `pred_score` and `pred_class` in your terminal.
2022-03-23 12:03:03 +08:00
2023-03-02 13:29:07 +08:00
Option (b). If you install mmpretrain as a python package, open your python interpreter and copy& paste the following codes.
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
```python
2023-03-02 13:29:07 +08:00
from mmpretrain import get_model, inference_model
2020-07-07 22:44:38 +08:00
2023-01-11 15:20:51 +08:00
model = get_model('resnet18_8xb32_in1k', device='cpu') # or device='cuda:0'
2022-08-26 18:03:18 +08:00
inference_model(model, 'demo/demo.JPEG')
```
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
You will see a dict printed, including the predicted label, score and category name.
2020-07-07 22:44:38 +08:00
2023-02-08 14:30:12 +08:00
```{note}
2023-03-02 13:29:07 +08:00
The `resnet18_8xb32_in1k` is the model name, and you can use [`mmpretrain.list_models` ](mmpretrain.apis.list_models ) to
2023-02-08 14:30:12 +08:00
explore all models, or search them on the [Model Zoo Summary ](./modelzoo_statistics.md )
```
2022-08-26 18:03:18 +08:00
## Customize Installation
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
### CUDA versions
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
When installing PyTorch, you need to specify the version of CUDA. If you are
not clear on which to choose, follow our recommendations:
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
- For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.
- For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.
2020-07-07 22:44:38 +08:00
2022-08-26 18:03:18 +08:00
Please make sure the GPU driver satisfies the minimum version requirements. See [this table ](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions ) for more information.
2020-12-02 19:42:45 +08:00
2022-08-26 18:03:18 +08:00
```{note}
Installing CUDA runtime libraries is enough if you follow our best practices,
because no CUDA code will be compiled locally. However if you hope to compile
MMCV from source or develop other CUDA operators, you need to install the
complete CUDA toolkit from NVIDIA's [website ](https://developer.nvidia.com/cuda-downloads ),
and its version should match the CUDA version of PyTorch. i.e., the specified
version of cudatoolkit in `conda install` command.
2020-07-07 22:44:38 +08:00
```
2022-08-26 18:03:18 +08:00
### Install on CPU-only platforms
2022-04-29 22:22:19 +08:00
2022-08-26 18:03:18 +08:00
MMClassification can be built for CPU only environment. In CPU mode you can train, test or inference a model.
2022-04-29 22:22:19 +08:00
2022-08-26 18:03:18 +08:00
### Install on Google Colab
2020-07-07 22:44:38 +08:00
2022-12-06 17:00:32 +08:00
See [the Colab tutorial ](https://colab.research.google.com/github/mzr1996/mmclassification-tutorial/blob/master/1.x/MMClassification_tools.ipynb ).
2020-07-09 14:20:31 +08:00
2022-08-26 18:03:18 +08:00
### Using MMClassification with Docker
2022-06-02 15:22:01 +08:00
2022-12-06 17:00:32 +08:00
We provide a [Dockerfile ](https://github.com/open-mmlab/mmclassification/blob/1.x/docker/Dockerfile )
2022-08-26 18:03:18 +08:00
to build an image. Ensure that your [docker version ](https://docs.docker.com/engine/install/ ) >=19.03.
2020-07-09 14:20:31 +08:00
```shell
2022-08-26 18:03:18 +08:00
# build an image with PyTorch 1.8.1, CUDA 10.2
# If you prefer other versions, just modified the Dockerfile
docker build -t mmclassification docker/
2020-07-09 14:20:31 +08:00
```
2022-08-26 18:03:18 +08:00
Run it with
2020-07-09 14:20:31 +08:00
```shell
2022-08-26 18:03:18 +08:00
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmclassification/data mmclassification
2020-07-09 14:20:31 +08:00
```
2022-08-26 18:03:18 +08:00
## Trouble shooting
2021-04-26 13:58:18 +08:00
2022-08-31 23:57:51 +08:00
If you have some issues during the installation, please first view the [FAQ ](./notes/faq.md ) page.
2022-08-26 18:03:18 +08:00
You may [open an issue ](https://github.com/open-mmlab/mmclassification/issues/new/choose )
on GitHub if no solution is found.