mmpretrain/configs/repmlp/repmlp-base_8xb64_in1k-256px.py

32 lines
953 B
Python
Raw Normal View History

_base_ = [
'../_base_/models/repmlp-base_224.py',
'../_base_/datasets/imagenet_bs64_pil_resize.py',
'../_base_/schedules/imagenet_bs4096_AdamW.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(backbone=dict(img_size=256))
# dataset settings
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=256),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=292, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=256),
dict(type='PackClsInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
# runtime settings
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=1.0)))