2021-10-29 10:37:16 +08:00
|
|
|
_base_ = [
|
|
|
|
'../_base_/models/t2t-vit-t-24.py',
|
|
|
|
'../_base_/datasets/imagenet_bs64_t2t_224.py',
|
|
|
|
'../_base_/default_runtime.py',
|
|
|
|
]
|
|
|
|
|
2022-06-01 14:11:53 +08:00
|
|
|
# schedule settings
|
2021-10-29 10:37:16 +08:00
|
|
|
paramwise_cfg = dict(
|
2021-12-28 15:09:40 +08:00
|
|
|
norm_decay_mult=0.0,
|
2021-10-29 10:37:16 +08:00
|
|
|
bias_decay_mult=0.0,
|
2021-12-28 15:09:40 +08:00
|
|
|
custom_keys={'cls_token': dict(decay_mult=0.0)},
|
2021-10-29 10:37:16 +08:00
|
|
|
)
|
|
|
|
optimizer = dict(
|
|
|
|
type='AdamW',
|
|
|
|
lr=5e-4,
|
|
|
|
weight_decay=0.065,
|
|
|
|
paramwise_cfg=paramwise_cfg,
|
|
|
|
)
|
|
|
|
|
2022-05-23 17:31:57 +08:00
|
|
|
param_scheduler = [
|
2022-06-01 14:11:53 +08:00
|
|
|
# warm up learning rate schedule
|
|
|
|
dict(
|
|
|
|
type='LinearLR',
|
|
|
|
start_factor=1e-6,
|
|
|
|
by_epoch=True,
|
|
|
|
begin=0,
|
|
|
|
end=10,
|
|
|
|
# update by iter
|
|
|
|
convert_to_iter_based=True),
|
|
|
|
# main learning rate scheduler
|
2022-05-23 17:31:57 +08:00
|
|
|
dict(
|
|
|
|
type='CosineAnnealingLR',
|
|
|
|
T_max=290,
|
|
|
|
eta_min=1e-5,
|
|
|
|
by_epoch=True,
|
|
|
|
begin=10,
|
|
|
|
end=300),
|
2022-06-01 14:11:53 +08:00
|
|
|
# cool down learning rate scheduler
|
2022-05-23 17:31:57 +08:00
|
|
|
dict(type='ConstantLR', factor=0.1, by_epoch=True, begin=300, end=310),
|
|
|
|
]
|
|
|
|
|
|
|
|
train_cfg = dict(by_epoch=True, max_epochs=310)
|
|
|
|
val_cfg = dict(interval=1) # validate every epoch
|
|
|
|
test_cfg = dict()
|
2022-06-01 14:11:53 +08:00
|
|
|
|
|
|
|
# runtime settings
|
|
|
|
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
|