mmpretrain/configs/t2t_vit/t2t-vit-t-24_8xb64_in1k.py

48 lines
1.1 KiB
Python
Raw Normal View History

_base_ = [
'../_base_/models/t2t-vit-t-24.py',
'../_base_/datasets/imagenet_bs64_t2t_224.py',
'../_base_/default_runtime.py',
]
# schedule settings
paramwise_cfg = dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={'cls_token': dict(decay_mult=0.0)},
)
optimizer = dict(
type='AdamW',
lr=5e-4,
weight_decay=0.065,
paramwise_cfg=paramwise_cfg,
)
2022-05-23 17:31:57 +08:00
param_scheduler = [
# warm up learning rate schedule
dict(
type='LinearLR',
start_factor=1e-6,
by_epoch=True,
begin=0,
end=10,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
2022-05-23 17:31:57 +08:00
dict(
type='CosineAnnealingLR',
T_max=290,
eta_min=1e-5,
by_epoch=True,
begin=10,
end=300),
# cool down learning rate scheduler
2022-05-23 17:31:57 +08:00
dict(type='ConstantLR', factor=0.1, by_epoch=True, begin=300, end=310),
]
train_cfg = dict(by_epoch=True, max_epochs=310)
val_cfg = dict(interval=1) # validate every epoch
test_cfg = dict()
# runtime settings
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]