mmpretrain/docs/en/tutorials/new_dataset.md

240 lines
6.5 KiB
Markdown
Raw Normal View History

# Tutorial 3: Customize Dataset
2020-07-08 12:59:15 +08:00
We support many common public datasets for image classification task, you can find them in
[this page](https://mmclassification.readthedocs.io/en/master/api/datasets.html).
2020-07-08 12:59:15 +08:00
In this section, we demonstrate how to [use your own dataset](#use-your-own-dataset)
and [use dataset wrapper](#use-dataset-wrapper).
## Use your own dataset
2020-07-08 12:59:15 +08:00
### Reorganize dataset to existing format
2020-07-08 12:59:15 +08:00
The simplest way to use your own dataset is to convert it to existing dataset formats.
For multi-class classification task, we recommend to use the format of
[`CustomDataset`](https://mmclassification.readthedocs.io/en/master/api/datasets.html#mmcls.datasets.CustomDataset).
The `CustomDataset` supports two kinds of format:
1. An annotation file is provided, and each line indicates a sample image.
The sample images can be organized in any structure, like:
```
train/
├── folder_1
│ ├── xxx.png
│ ├── xxy.png
│ └── ...
├── 123.png
├── nsdf3.png
└── ...
```
And an annotation file records all paths of samples and corresponding
category index. The first column is the image path relative to the folder
(in this example, `train`) and the second column is the index of category:
```
folder_1/xxx.png 0
folder_1/xxy.png 1
123.png 1
nsdf3.png 2
...
```
```{note}
The value of the category indices should fall in range `[0, num_classes - 1]`.
```
2. The sample images are arranged in the special structure:
```
train/
├── cat
│ ├── xxx.png
│ ├── xxy.png
│ └── ...
│ └── xxz.png
├── bird
│ ├── bird1.png
│ ├── bird2.png
│ └── ...
└── dog
├── 123.png
├── nsdf3.png
├── ...
└── asd932_.png
```
In this case, you don't need provide annotation file, and all images in the directory `cat` will be
recognized as samples of `cat`.
Usually, we will split the whole dataset to three sub datasets: `train`, `val`
and `test` for training, validation and test. And **every** sub dataset should
be organized as one of the above structures.
For example, the whole dataset is as below (using the first structure):
2020-07-08 12:59:15 +08:00
```
mmclassification
└── data
└── my_dataset
├── meta
│ ├── train.txt
│ ├── val.txt
│ └── test.txt
├── train
├── val
└── test
2020-07-08 12:59:15 +08:00
```
And in your config file, you can modify the `data` field as below:
2020-07-08 12:59:15 +08:00
```python
...
dataset_type = 'CustomDataset'
classes = ['cat', 'bird', 'dog'] # The category names of your dataset
data = dict(
train=dict(
type=dataset_type,
data_prefix='data/my_dataset/train',
ann_file='data/my_dataset/meta/train.txt',
classes=classes,
pipeline=train_pipeline
),
val=dict(
type=dataset_type,
data_prefix='data/my_dataset/val',
ann_file='data/my_dataset/meta/val.txt',
classes=classes,
pipeline=test_pipeline
),
test=dict(
type=dataset_type,
data_prefix='data/my_dataset/test',
ann_file='data/my_dataset/meta/test.txt',
classes=classes,
pipeline=test_pipeline
)
)
...
2020-07-08 12:59:15 +08:00
```
### Create a new dataset class
You can write a new dataset class inherited from `BaseDataset`, and overwrite `load_annotations(self)`,
like [CIFAR10](https://github.com/open-mmlab/mmclassification/blob/master/mmcls/datasets/cifar.py) and
[CustomDataset](https://github.com/open-mmlab/mmclassification/blob/master/mmcls/datasets/custom.py).
2020-07-08 12:59:15 +08:00
Typically, this function returns a list, where each sample is a dict, containing necessary data information,
e.g., `img` and `gt_label`.
2020-07-08 12:59:15 +08:00
Assume we are going to implement a `Filelist` dataset, which takes filelists for both training and testing.
The format of annotation list is as follows:
2020-07-08 12:59:15 +08:00
```
000001.jpg 0
000002.jpg 1
```
We can create a new dataset in `mmcls/datasets/filelist.py` to load the data.
2020-07-08 12:59:15 +08:00
```python
import mmcv
import numpy as np
from .builder import DATASETS
from .base_dataset import BaseDataset
@DATASETS.register_module()
class Filelist(BaseDataset):
2020-07-08 12:59:15 +08:00
def load_annotations(self):
assert isinstance(self.ann_file, str)
data_infos = []
with open(self.ann_file) as f:
samples = [x.strip().split(' ') for x in f.readlines()]
for filename, gt_label in samples:
info = {'img_prefix': self.data_prefix}
info['img_info'] = {'filename': filename}
info['gt_label'] = np.array(gt_label, dtype=np.int64)
data_infos.append(info)
return data_infos
```
And add this dataset class in `mmcls/datasets/__init__.py`
```python
from .base_dataset import BaseDataset
...
from .filelist import Filelist
__all__ = [
'BaseDataset', ... ,'Filelist'
]
```
2020-07-08 12:59:15 +08:00
Then in the config, to use `Filelist` you can modify the config as the following
```python
train = dict(
2020-07-08 12:59:15 +08:00
type='Filelist',
ann_file='image_list.txt',
2020-07-08 12:59:15 +08:00
pipeline=train_pipeline
)
```
## Use dataset wrapper
2020-07-08 12:59:15 +08:00
The dataset wrapper is a kind of class to change the behavior of dataset class, such as repeat the dataset or
re-balance the samples of different categories.
2020-07-08 12:59:15 +08:00
### Repeat dataset
We use `RepeatDataset` as wrapper to repeat the dataset. For example, suppose the original dataset is
`Dataset_A`, to repeat it, the config looks like the following
2020-07-08 12:59:15 +08:00
```python
data = dict(
train = dict(
2020-07-08 12:59:15 +08:00
type='RepeatDataset',
times=N,
dataset=dict( # This is the original config of Dataset_A
type='Dataset_A',
...
pipeline=train_pipeline
)
)
...
)
2020-07-08 12:59:15 +08:00
```
### Class balanced dataset
We use `ClassBalancedDataset` as wrapper to repeat the dataset based on category frequency. The dataset to
repeat needs to implement method `get_cat_ids(idx)` to support `ClassBalancedDataset`. For example, to repeat
`Dataset_A` with `oversample_thr=1e-3`, the config looks like the following
2020-07-08 12:59:15 +08:00
```python
data = dict(
train = dict(
2020-07-08 12:59:15 +08:00
type='ClassBalancedDataset',
oversample_thr=1e-3,
dataset=dict( # This is the original config of Dataset_A
type='Dataset_A',
...
pipeline=train_pipeline
)
)
...
)
2020-07-08 12:59:15 +08:00
```
You may refer to [API reference](https://mmclassification.readthedocs.io/en/master/api/datasets.html#mmcls.datasets.ClassBalancedDataset) for details.