2021-08-17 19:52:42 +08:00
|
|
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
2020-07-08 10:48:08 +08:00
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
from ..builder import BACKBONES
|
|
|
|
|
from .base_backbone import BaseBackbone
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@BACKBONES.register_module()
|
|
|
|
|
class LeNet5(BaseBackbone):
|
|
|
|
|
"""`LeNet5 <https://en.wikipedia.org/wiki/LeNet>`_ backbone.
|
|
|
|
|
|
|
|
|
|
The input for LeNet-5 is a 32×32 grayscale image.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
num_classes (int): number of classes for classification.
|
|
|
|
|
The default value is -1, which uses the backbone as
|
|
|
|
|
a feature extractor without the top classifier.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, num_classes=-1):
|
|
|
|
|
super(LeNet5, self).__init__()
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
|
self.features = nn.Sequential(
|
|
|
|
|
nn.Conv2d(1, 6, kernel_size=5, stride=1), nn.Tanh(),
|
|
|
|
|
nn.AvgPool2d(kernel_size=2),
|
|
|
|
|
nn.Conv2d(6, 16, kernel_size=5, stride=1), nn.Tanh(),
|
|
|
|
|
nn.AvgPool2d(kernel_size=2),
|
|
|
|
|
nn.Conv2d(16, 120, kernel_size=5, stride=1), nn.Tanh())
|
|
|
|
|
if self.num_classes > 0:
|
|
|
|
|
self.classifier = nn.Sequential(
|
|
|
|
|
nn.Linear(120, 84),
|
|
|
|
|
nn.Tanh(),
|
|
|
|
|
nn.Linear(84, num_classes),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
|
|
|
|
|
x = self.features(x)
|
|
|
|
|
if self.num_classes > 0:
|
|
|
|
|
x = self.classifier(x.squeeze())
|
|
|
|
|
|
2021-09-08 10:38:57 +08:00
|
|
|
|
return (x, )
|