mmpretrain/configs/_base_/datasets/voc_bs16.py

42 lines
1.5 KiB
Python
Raw Normal View History

# dataset settings
dataset_type = 'VOC'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(256, -1), keep_ratio=True),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=16,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_prefix='data/VOCdevkit/VOC2007/',
ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/trainval.txt',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/VOCdevkit/VOC2007/',
ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/test.txt',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
data_prefix='data/VOCdevkit/VOC2007/',
ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/test.txt',
pipeline=test_pipeline))
evaluation = dict(
interval=1, metric=['mAP', 'CP', 'OP', 'CR', 'OR', 'CF1', 'OF1'])