2021-11-19 14:20:35 +08:00
|
|
|
_base_ = ['../_base_/models/resnest50.py', '../_base_/default_runtime.py']
|
|
|
|
|
|
|
|
# dataset settings
|
|
|
|
dataset_type = 'ImageNet'
|
|
|
|
img_lighting_cfg = dict(
|
|
|
|
eigval=[55.4625, 4.7940, 1.1475],
|
|
|
|
eigvec=[[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140],
|
|
|
|
[-0.5836, -0.6948, 0.4203]],
|
|
|
|
alphastd=0.1,
|
|
|
|
to_rgb=True)
|
|
|
|
policies = [
|
|
|
|
dict(type='AutoContrast', prob=0.5),
|
|
|
|
dict(type='Equalize', prob=0.5),
|
|
|
|
dict(type='Invert', prob=0.5),
|
|
|
|
dict(
|
|
|
|
type='Rotate',
|
|
|
|
magnitude_key='angle',
|
|
|
|
magnitude_range=(0, 30),
|
|
|
|
pad_val=0,
|
|
|
|
prob=0.5,
|
|
|
|
random_negative_prob=0.5),
|
|
|
|
dict(
|
|
|
|
type='Posterize',
|
|
|
|
magnitude_key='bits',
|
|
|
|
magnitude_range=(0, 4),
|
|
|
|
prob=0.5),
|
|
|
|
dict(
|
|
|
|
type='Solarize',
|
|
|
|
magnitude_key='thr',
|
|
|
|
magnitude_range=(0, 256),
|
|
|
|
prob=0.5),
|
|
|
|
dict(
|
|
|
|
type='SolarizeAdd',
|
|
|
|
magnitude_key='magnitude',
|
|
|
|
magnitude_range=(0, 110),
|
|
|
|
thr=128,
|
|
|
|
prob=0.5),
|
|
|
|
dict(
|
|
|
|
type='ColorTransform',
|
|
|
|
magnitude_key='magnitude',
|
|
|
|
magnitude_range=(-0.9, 0.9),
|
|
|
|
prob=0.5,
|
|
|
|
random_negative_prob=0.),
|
|
|
|
dict(
|
|
|
|
type='Contrast',
|
|
|
|
magnitude_key='magnitude',
|
|
|
|
magnitude_range=(-0.9, 0.9),
|
|
|
|
prob=0.5,
|
|
|
|
random_negative_prob=0.),
|
|
|
|
dict(
|
|
|
|
type='Brightness',
|
|
|
|
magnitude_key='magnitude',
|
|
|
|
magnitude_range=(-0.9, 0.9),
|
|
|
|
prob=0.5,
|
|
|
|
random_negative_prob=0.),
|
|
|
|
dict(
|
|
|
|
type='Sharpness',
|
|
|
|
magnitude_key='magnitude',
|
|
|
|
magnitude_range=(-0.9, 0.9),
|
|
|
|
prob=0.5,
|
|
|
|
random_negative_prob=0.),
|
|
|
|
dict(
|
|
|
|
type='Shear',
|
|
|
|
magnitude_key='magnitude',
|
|
|
|
magnitude_range=(0, 0.3),
|
|
|
|
pad_val=0,
|
|
|
|
prob=0.5,
|
|
|
|
direction='horizontal',
|
|
|
|
random_negative_prob=0.5),
|
|
|
|
dict(
|
|
|
|
type='Shear',
|
|
|
|
magnitude_key='magnitude',
|
|
|
|
magnitude_range=(0, 0.3),
|
|
|
|
pad_val=0,
|
|
|
|
prob=0.5,
|
|
|
|
direction='vertical',
|
|
|
|
random_negative_prob=0.5),
|
|
|
|
dict(
|
|
|
|
type='Cutout',
|
|
|
|
magnitude_key='shape',
|
|
|
|
magnitude_range=(1, 41),
|
|
|
|
pad_val=0,
|
|
|
|
prob=0.5),
|
|
|
|
dict(
|
|
|
|
type='Translate',
|
|
|
|
magnitude_key='magnitude',
|
|
|
|
magnitude_range=(0, 0.3),
|
|
|
|
pad_val=0,
|
|
|
|
prob=0.5,
|
|
|
|
direction='horizontal',
|
|
|
|
random_negative_prob=0.5,
|
|
|
|
interpolation='bicubic'),
|
|
|
|
dict(
|
|
|
|
type='Translate',
|
|
|
|
magnitude_key='magnitude',
|
|
|
|
magnitude_range=(0, 0.3),
|
|
|
|
pad_val=0,
|
|
|
|
prob=0.5,
|
|
|
|
direction='vertical',
|
|
|
|
random_negative_prob=0.5,
|
|
|
|
interpolation='bicubic')
|
|
|
|
]
|
|
|
|
train_pipeline = [
|
|
|
|
dict(type='LoadImageFromFile'),
|
|
|
|
dict(
|
|
|
|
type='RandAugment',
|
|
|
|
policies=policies,
|
|
|
|
num_policies=2,
|
|
|
|
magnitude_level=12),
|
|
|
|
dict(
|
|
|
|
type='RandomResizedCrop',
|
|
|
|
size=224,
|
|
|
|
efficientnet_style=True,
|
|
|
|
interpolation='bicubic',
|
|
|
|
backend='pillow'),
|
|
|
|
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
|
|
|
|
dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4),
|
|
|
|
dict(type='Lighting', **img_lighting_cfg),
|
|
|
|
dict(
|
|
|
|
type='Normalize',
|
|
|
|
mean=[123.675, 116.28, 103.53],
|
|
|
|
std=[58.395, 57.12, 57.375],
|
|
|
|
to_rgb=False),
|
|
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
|
|
dict(type='ToTensor', keys=['gt_label']),
|
|
|
|
dict(type='Collect', keys=['img', 'gt_label'])
|
|
|
|
]
|
|
|
|
test_pipeline = [
|
|
|
|
dict(type='LoadImageFromFile'),
|
|
|
|
dict(
|
|
|
|
type='CenterCrop',
|
|
|
|
crop_size=224,
|
|
|
|
efficientnet_style=True,
|
|
|
|
interpolation='bicubic',
|
|
|
|
backend='pillow'),
|
|
|
|
dict(
|
|
|
|
type='Normalize',
|
|
|
|
mean=[123.675, 116.28, 103.53],
|
|
|
|
std=[58.395, 57.12, 57.375],
|
|
|
|
to_rgb=True),
|
|
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
|
|
dict(type='Collect', keys=['img'])
|
|
|
|
]
|
|
|
|
data = dict(
|
|
|
|
samples_per_gpu=64,
|
|
|
|
workers_per_gpu=2,
|
|
|
|
train=dict(
|
|
|
|
type=dataset_type,
|
|
|
|
data_prefix='data/imagenet/train',
|
|
|
|
pipeline=train_pipeline),
|
|
|
|
val=dict(
|
|
|
|
type=dataset_type,
|
|
|
|
data_prefix='data/imagenet/val',
|
|
|
|
ann_file='data/imagenet/meta/val.txt',
|
|
|
|
pipeline=test_pipeline),
|
|
|
|
test=dict(
|
|
|
|
# replace `data/val` with `data/test` for standard test
|
|
|
|
type=dataset_type,
|
|
|
|
data_prefix='data/imagenet/val',
|
|
|
|
ann_file='data/imagenet/meta/val.txt',
|
|
|
|
pipeline=test_pipeline))
|
|
|
|
evaluation = dict(interval=1, metric='accuracy')
|
|
|
|
|
|
|
|
# optimizer
|
|
|
|
optimizer = dict(
|
|
|
|
type='SGD',
|
|
|
|
lr=0.8,
|
|
|
|
momentum=0.9,
|
|
|
|
weight_decay=1e-4,
|
|
|
|
paramwise_cfg=dict(bias_decay_mult=0., norm_decay_mult=0.))
|
|
|
|
optimizer_config = dict(grad_clip=None)
|
|
|
|
|
|
|
|
# learning policy
|
2022-05-23 17:31:57 +08:00
|
|
|
param_scheduler = [
|
|
|
|
dict(type='LinearLR', start_factor=1e-6, by_epoch=True, begin=0, end=5),
|
|
|
|
dict(type='CosineAnnealingLR', T_max=265, by_epoch=True, begin=5, end=270)
|
|
|
|
]
|
|
|
|
# train, val, test setting
|
|
|
|
train_cfg = dict(by_epoch=True, max_epochs=270)
|
|
|
|
val_cfg = dict(interval=1) # validate every epoch
|
|
|
|
test_cfg = dict()
|