mmpretrain/configs/cae/metafile.yml

38 lines
1.4 KiB
YAML
Raw Normal View History

Collections:
- Name: CAE
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- AdamW
Training Resources: 8x A100-80G GPUs
Architecture:
- ViT
Paper:
URL: https://arxiv.org/abs/2202.03026
Title: "Context Autoencoder for Self-Supervised Representation Learning"
README: configs/cae/README.md
Models:
- Name: cae_vit-base-p16_8xb256-amp-coslr-300e_in1k
In Collection: CAE
Metadata:
Epochs: 300
Batch Size: 2048
Results: null
Config: configs/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221230-808170f3.pth
Downstream:
- beit-base-p16_cae-pre_8xb128-coslr-100e_in1k
- Name: beit-base-p16_cae-pre_8xb128-coslr-100e_in1k
In Collection: CAE
Metadata:
Epochs: 100
Batch Size: 1024
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.2
Config: configs/cae/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k_20220825-f3d234cd.pth