mmpretrain/docs/tutorials/data_pipeline.md

118 lines
3.3 KiB
Markdown
Raw Normal View History

2020-07-08 12:59:15 +08:00
# Tutorial 3: Custom Data Pipelines
## Design of Data pipelines
Following typical conventions, we use `Dataset` and `DataLoader` for data loading
with multiple workers. `Dataset` returns a dict of data items corresponding to
the arguments of models' forward method.
The data preparation pipeline and the dataset is decomposed. Usually a dataset
defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.
The operations are categorized into data loading, pre-processing and formatting.
Here is an pipeline example for ResNet-50 training on ImageNet.
```python
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=256),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
```
For each operation, we list the related dict fields that are added/updated/removed.
At the end of the pipeline, we use `Collect` to only retain the necessary items for forward computation.
### Data loading
`LoadImageFromFile`
- add: img, img_shape, ori_shape
### Pre-processing
`Resize`
- add: scale, scale_idx, pad_shape, scale_factor, keep_ratio
- update: img, img_shape
`RandomFlip`
2020-07-08 23:54:49 +08:00
- add: flip, flip_direction
2020-07-08 12:59:15 +08:00
- update: img
`RandomCrop`
- update: img, pad_shape
`Normalize`
- add: img_norm_cfg
- update: img
### Formatting
`ToTensor`
- update: specified by `keys`.
`ImageToTensor`
- update: specified by `keys`.
`Transpose`
- update: specified by `keys`.
`Collect`
- remove: all other keys except for those specified by `keys`
## Extend and use custom pipelines
1. Write a new pipeline in any file, e.g., `my_pipeline.py`. It takes a dict as input and return a dict.
```python
from mmcls.datasets import PIPELINES
@PIPELINES.register_module()
class MyTransform(object):
def __call__(self, results):
results['dummy'] = True
# apply transforms on results['img']
return results
```
2. Import the new class.
```python
from .my_pipeline import MyTransform
```
3. Use it in config files.
```python
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='MyTransform'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
```