2020-07-07 19:32:06 +08:00
|
|
|
import torch.nn as nn
|
2020-09-30 19:00:20 +08:00
|
|
|
import torch.nn.functional as F
|
2020-07-07 19:32:06 +08:00
|
|
|
|
|
|
|
from ..builder import HEADS
|
|
|
|
from .cls_head import ClsHead
|
|
|
|
|
|
|
|
|
|
|
|
@HEADS.register_module()
|
|
|
|
class LinearClsHead(ClsHead):
|
|
|
|
"""Linear classifier head.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_classes (int): Number of categories excluding the background
|
|
|
|
category.
|
|
|
|
in_channels (int): Number of channels in the input feature map.
|
2021-06-30 19:13:27 +08:00
|
|
|
init_cfg (dict | optional): The extra init config of layers.
|
|
|
|
Defaults to use dict(type='Normal', layer='Linear', std=0.01).
|
2021-05-10 14:56:55 +08:00
|
|
|
"""
|
|
|
|
|
2021-06-15 21:08:30 +08:00
|
|
|
def __init__(self,
|
|
|
|
num_classes,
|
|
|
|
in_channels,
|
2021-06-30 19:13:27 +08:00
|
|
|
init_cfg=dict(type='Normal', layer='Linear', std=0.01),
|
2021-06-15 21:08:30 +08:00
|
|
|
*args,
|
|
|
|
**kwargs):
|
|
|
|
super(LinearClsHead, self).__init__(init_cfg=init_cfg, *args, **kwargs)
|
2021-06-10 10:54:34 +08:00
|
|
|
|
2020-07-07 19:32:06 +08:00
|
|
|
self.in_channels = in_channels
|
|
|
|
self.num_classes = num_classes
|
|
|
|
|
|
|
|
if self.num_classes <= 0:
|
|
|
|
raise ValueError(
|
|
|
|
f'num_classes={num_classes} must be a positive integer')
|
|
|
|
|
|
|
|
self.fc = nn.Linear(self.in_channels, self.num_classes)
|
|
|
|
|
2020-09-30 19:00:20 +08:00
|
|
|
def simple_test(self, img):
|
|
|
|
"""Test without augmentation."""
|
|
|
|
cls_score = self.fc(img)
|
|
|
|
if isinstance(cls_score, list):
|
|
|
|
cls_score = sum(cls_score) / float(len(cls_score))
|
|
|
|
pred = F.softmax(cls_score, dim=1) if cls_score is not None else None
|
2021-06-14 23:25:35 +08:00
|
|
|
|
2021-08-12 11:54:24 +08:00
|
|
|
return self.post_process(pred)
|
2020-09-30 19:00:20 +08:00
|
|
|
|
2020-07-07 19:32:06 +08:00
|
|
|
def forward_train(self, x, gt_label):
|
|
|
|
cls_score = self.fc(x)
|
|
|
|
losses = self.loss(cls_score, gt_label)
|
|
|
|
return losses
|