mmpretrain/tests/test_models/test_heads.py

152 lines
4.6 KiB
Python
Raw Normal View History

from unittest.mock import patch
import pytest
import torch
from mmcls.models.heads import (ClsHead, LinearClsHead, MultiLabelClsHead,
MultiLabelLinearClsHead, StackedLinearClsHead,
VisionTransformerClsHead)
def test_cls_head():
# test ClsHead with cal_acc=False
head = ClsHead()
fake_cls_score = torch.rand(4, 3)
fake_gt_label = torch.randint(0, 2, (4, ))
losses = head.loss(fake_cls_score, fake_gt_label)
assert losses['loss'].item() > 0
# test ClsHead with cal_acc=True
head = ClsHead(cal_acc=True)
fake_cls_score = torch.rand(4, 3)
fake_gt_label = torch.randint(0, 2, (4, ))
losses = head.loss(fake_cls_score, fake_gt_label)
assert losses['loss'].item() > 0
def test_linear_head():
fake_features = torch.rand(4, 100)
fake_gt_label = torch.randint(0, 10, (4, ))
# test LinearClsHead forward
head = LinearClsHead(10, 100)
losses = head.forward_train(fake_features, fake_gt_label)
assert losses['loss'].item() > 0
# test init weights
head = LinearClsHead(10, 100)
head.init_weights()
assert abs(head.fc.weight).sum() > 0
# test simple_test
head = LinearClsHead(10, 100)
pred = head.simple_test(fake_features)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
head = LinearClsHead(10, 100)
pred = head.simple_test(fake_features)
assert pred.shape == (4, 10)
def test_multilabel_head():
head = MultiLabelClsHead()
fake_cls_score = torch.rand(4, 3)
fake_gt_label = torch.randint(0, 2, (4, 3))
losses = head.loss(fake_cls_score, fake_gt_label)
assert losses['loss'].item() > 0
def test_multilabel_linear_head():
head = MultiLabelLinearClsHead(3, 5)
fake_cls_score = torch.rand(4, 3)
fake_gt_label = torch.randint(0, 2, (4, 3))
head.init_weights()
losses = head.loss(fake_cls_score, fake_gt_label)
assert losses['loss'].item() > 0
def test_stacked_linear_cls_head():
# test assertion
with pytest.raises(AssertionError):
StackedLinearClsHead(num_classes=3, in_channels=5, mid_channels=10)
with pytest.raises(AssertionError):
StackedLinearClsHead(num_classes=-1, in_channels=5, mid_channels=[10])
fake_img = torch.rand(4, 5) # B, channel
fake_gt_label = torch.randint(0, 2, (4, )) # B, num_classes
# test forward with default setting
head = StackedLinearClsHead(
num_classes=3, in_channels=5, mid_channels=[10])
head.init_weights()
losses = head.forward_train(fake_img, fake_gt_label)
assert losses['loss'].item() > 0
# test simple test
pred = head.simple_test(fake_img)
assert len(pred) == 4
# test simple test in tracing
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(fake_img)
assert pred.shape == torch.Size((4, 3))
# test forward with full function
head = StackedLinearClsHead(
num_classes=3,
in_channels=5,
mid_channels=[8, 10],
dropout_rate=0.2,
norm_cfg=dict(type='BN1d'),
act_cfg=dict(type='HSwish'))
head.init_weights()
losses = head.forward_train(fake_img, fake_gt_label)
assert losses['loss'].item() > 0
def test_vit_head():
fake_features = torch.rand(4, 100)
fake_gt_label = torch.randint(0, 10, (4, ))
# test vit head forward
head = VisionTransformerClsHead(10, 100)
losses = head.forward_train(fake_features, fake_gt_label)
assert not hasattr(head.layers, 'pre_logits')
assert not hasattr(head.layers, 'act')
assert losses['loss'].item() > 0
# test vit head forward with hidden layer
head = VisionTransformerClsHead(10, 100, hidden_dim=20)
losses = head.forward_train(fake_features, fake_gt_label)
assert hasattr(head.layers, 'pre_logits') and hasattr(head.layers, 'act')
assert losses['loss'].item() > 0
# test vit head init_weights
head = VisionTransformerClsHead(10, 100, hidden_dim=20)
head.init_weights()
assert abs(head.layers.pre_logits.weight).sum() > 0
# test simple_test
head = VisionTransformerClsHead(10, 100, hidden_dim=20)
pred = head.simple_test(fake_features)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
head = VisionTransformerClsHead(10, 100, hidden_dim=20)
pred = head.simple_test(fake_features)
assert pred.shape == (4, 10)
# test assertion
with pytest.raises(ValueError):
VisionTransformerClsHead(-1, 100)