mmpretrain/tools/model_converters/ofa.py

112 lines
3.5 KiB
Python
Raw Normal View History

[Feature] Support multiple multi-modal algorithms and inferencers. (#1561) * [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
2023-05-19 16:50:04 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import re
from collections import OrderedDict, namedtuple
from pathlib import Path
import torch
prog_description = """\
Convert OFA official models to MMPretrain format.
"""
MapItem = namedtuple(
'MapItem', 'pattern repl key_action value_action', defaults=[None] * 4)
def convert_by_mapdict(src_dict: dict, map_dict: Path):
dst_dict = OrderedDict()
convert_map_dict = dict()
for k, v in src_dict.items():
ori_k = k
for item in map_dict:
pattern = item.pattern
assert pattern is not None
match = next(re.finditer(pattern, k), None)
if match is None:
continue
match_group = match.groups()
repl = item.repl
key_action = item.key_action
if key_action is not None:
assert callable(key_action)
match_group = key_action(*match_group)
if isinstance(match_group, str):
match_group = (match_group, )
start, end = match.span(0)
if repl is not None:
k = k[:start] + repl.format(*match_group) + k[end:]
else:
for i, sub in enumerate(match_group):
start, end = match.span(i + 1)
k = k[:start] + str(sub) + k[end:]
value_action = item.value_action
if value_action is not None:
assert callable(value_action)
v = value_action(v)
if v is not None:
dst_dict[k] = v
convert_map_dict[k] = ori_k
return dst_dict, convert_map_dict
map_dict = [
# Encoder modules
MapItem(r'\.type_embedding\.', '.embed_type.'),
MapItem(r'\.layernorm_embedding\.', '.embedding_ln.'),
MapItem(r'\.patch_layernorm_embedding\.', '.image_embedding_ln.'),
MapItem(r'encoder.layer_norm\.', 'encoder.final_ln.'),
# Encoder layers
MapItem(r'\.attn_ln\.', '.attn_mid_ln.'),
MapItem(r'\.ffn_layernorm\.', '.ffn_mid_ln.'),
MapItem(r'\.final_layer_norm', '.ffn_ln'),
MapItem(r'encoder.*(\.self_attn\.)', key_action=lambda _: '.attn.'),
MapItem(
r'encoder.*(\.self_attn_layer_norm\.)',
key_action=lambda _: '.attn_ln.'),
# Decoder modules
MapItem(r'\.code_layernorm_embedding\.', '.code_embedding_ln.'),
MapItem(r'decoder.layer_norm\.', 'decoder.final_ln.'),
# Decoder layers
MapItem(r'\.self_attn_ln', '.self_attn_mid_ln'),
MapItem(r'\.cross_attn_ln', '.cross_attn_mid_ln'),
MapItem(r'\.encoder_attn_layer_norm', '.cross_attn_ln'),
MapItem(r'\.encoder_attn', '.cross_attn'),
MapItem(
r'decoder.*(\.self_attn_layer_norm\.)',
key_action=lambda _: '.self_attn_ln.'),
# Remove version key
MapItem(r'version', '', value_action=lambda _: None),
# Add model prefix
MapItem(r'^', 'model.'),
]
def parse_args():
parser = argparse.ArgumentParser(description=prog_description)
parser.add_argument('src', type=str, help='The official checkpoint path.')
parser.add_argument('dst', type=str, help='The save path.')
args = parser.parse_args()
return args
def main():
args = parse_args()
src = torch.load(args.src)
if 'extra_state' in src and 'ema' in src['extra_state']:
print('Use EMA weights.')
src = src['extra_state']['ema']
else:
src = src['model']
dst, _ = convert_by_mapdict(src, map_dict)
torch.save(dst, args.dst)
print('Done!!')
if __name__ == '__main__':
main()