mmpretrain/tests/test_models/test_backbones/test_timm_backbone.py

42 lines
1.2 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import TIMMBackbone
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_timm_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = TIMMBackbone()
model.init_weights(pretrained=0)
# Test resnet18 from timm
model = TIMMBackbone(model_name='resnet18')
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == torch.Size((1, 512, 7, 7))
# Test efficientnet_b1 with pretrained weights
model = TIMMBackbone(model_name='efficientnet_b1', pretrained=True)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == torch.Size((1, 1280, 7, 7))