36 lines
826 B
ReStructuredText
36 lines
826 B
ReStructuredText
|
.. role:: hidden
|
||
|
:class: hidden-section
|
||
|
|
||
|
Batch Augmentation
|
||
|
===================================
|
||
|
|
||
|
Batch augmentation is the augmentation which involve multiple samples, such as Mixup and CutMix.
|
||
|
|
||
|
In MMClassification, these batch augmentation is used as a part of :ref:`classifiers`. A typical usage is as below:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
model = dict(
|
||
|
backbone = ...,
|
||
|
neck = ...,
|
||
|
head = ...,
|
||
|
train_cfg=dict(augments=[
|
||
|
dict(type='BatchMixup', alpha=0.8, prob=0.5, num_classes=num_classes),
|
||
|
dict(type='BatchCutMix', alpha=1.0, prob=0.5, num_classes=num_classes),
|
||
|
]))
|
||
|
)
|
||
|
|
||
|
.. currentmodule:: mmcls.models.utils.augment
|
||
|
|
||
|
Mixup
|
||
|
-----
|
||
|
.. autoclass:: BatchMixupLayer
|
||
|
|
||
|
CutMix
|
||
|
------
|
||
|
.. autoclass:: BatchCutMixLayer
|
||
|
|
||
|
ResizeMix
|
||
|
---------
|
||
|
.. autoclass:: BatchResizeMixLayer
|