mmpretrain/docs/en/api/models.utils.augment.rst

36 lines
826 B
ReStructuredText
Raw Normal View History

.. role:: hidden
:class: hidden-section
Batch Augmentation
===================================
Batch augmentation is the augmentation which involve multiple samples, such as Mixup and CutMix.
In MMClassification, these batch augmentation is used as a part of :ref:`classifiers`. A typical usage is as below:
.. code-block:: python
model = dict(
backbone = ...,
neck = ...,
head = ...,
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, prob=0.5, num_classes=num_classes),
dict(type='BatchCutMix', alpha=1.0, prob=0.5, num_classes=num_classes),
]))
)
.. currentmodule:: mmcls.models.utils.augment
Mixup
-----
.. autoclass:: BatchMixupLayer
CutMix
------
.. autoclass:: BatchCutMixLayer
ResizeMix
---------
.. autoclass:: BatchResizeMixLayer