62 lines
1.7 KiB
Python
62 lines
1.7 KiB
Python
|
_base_ = [
|
||
|
'../_base_/datasets/imagenet_bs256_simmim_192.py',
|
||
|
'../_base_/default_runtime.py',
|
||
|
]
|
||
|
|
||
|
# model settings
|
||
|
model = dict(
|
||
|
type='SimMIM',
|
||
|
backbone=dict(
|
||
|
type='SimMIMSwinTransformer',
|
||
|
arch='large',
|
||
|
img_size=192,
|
||
|
stage_cfgs=dict(block_cfgs=dict(window_size=12)),
|
||
|
pad_small_map=True),
|
||
|
neck=dict(type='SimMIMNeck', in_channels=192 * 2**3, encoder_stride=32),
|
||
|
head=dict(
|
||
|
type='SimMIMHead',
|
||
|
patch_size=4,
|
||
|
loss=dict(type='SimMIMReconstructionLoss', encoder_in_channels=3)))
|
||
|
|
||
|
# optimizer wrapper
|
||
|
optim_wrapper = dict(
|
||
|
type='AmpOptimWrapper',
|
||
|
optimizer=dict(
|
||
|
type='AdamW', lr=1e-4 * 2048 / 512, betas=(0.9, 0.999), eps=1e-8),
|
||
|
clip_grad=dict(max_norm=5.0),
|
||
|
paramwise_cfg=dict(
|
||
|
custom_keys={
|
||
|
'norm': dict(decay_mult=0.0),
|
||
|
'bias': dict(decay_mult=0.0),
|
||
|
'absolute_pos_embed': dict(decay_mult=0.),
|
||
|
'relative_position_bias_table': dict(decay_mult=0.)
|
||
|
}))
|
||
|
|
||
|
# learning rate scheduler
|
||
|
param_scheduler = [
|
||
|
dict(
|
||
|
type='LinearLR',
|
||
|
start_factor=5e-7 / 1e-4,
|
||
|
by_epoch=True,
|
||
|
begin=0,
|
||
|
end=10,
|
||
|
convert_to_iter_based=True),
|
||
|
dict(
|
||
|
type='MultiStepLR',
|
||
|
milestones=[700],
|
||
|
by_epoch=True,
|
||
|
begin=10,
|
||
|
end=800,
|
||
|
convert_to_iter_based=True)
|
||
|
]
|
||
|
|
||
|
# runtime
|
||
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=800)
|
||
|
default_hooks = dict(
|
||
|
# only keeps the latest 3 checkpoints
|
||
|
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
|
||
|
|
||
|
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||
|
# based on the actual training batch size.
|
||
|
auto_scale_lr = dict(base_batch_size=2048)
|